음극활물질 편집하기

이동: 둘러보기, 검색

경고: 로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다. 로그인하거나 계정을 생성하면 편집자가 아이디(ID)으로 기록되고, 다른 장점도 있습니다.

편집을 되돌릴 수 있습니다. 이 편집을 되돌리려면 아래의 바뀐 내용을 확인한 후 저장해주세요.
최신판 당신의 편집
5번째 줄: 5번째 줄:
 
음극재의 [[에너지 밀도]] 개선을 위해서 전극재료의 변경, 도포 기술의 향상, 전극 Packing 기술의 향상, 음극의 충방전 효율 향상 등이 있으나 전극재료의 변경을 제외한 수단은 이미 한계에 이른 것으로 판단되고 있다.
 
음극재의 [[에너지 밀도]] 개선을 위해서 전극재료의 변경, 도포 기술의 향상, 전극 Packing 기술의 향상, 음극의 충방전 효율 향상 등이 있으나 전극재료의 변경을 제외한 수단은 이미 한계에 이른 것으로 판단되고 있다.
  
사실 더 오래 가고 빨리 충전되는 배터리를 만들려면 전극의 성능이 좋아야 한다. 현재 리튬이온배터리의 경우 음극재로 [[흑연]]이 널리 쓰이고 있다. 흔하고 싼 재료인데다 층상 구조라 틈새에 [[리튬이온]]이 쉽게 들어갔다가(충전) 나올 수 있고(방전), 이 과정이 반복돼도 안정적이기 때문이다. 다만 에너지 밀도가 높지 않고 충전 속도도 빠르지 않다. 흑연의 가장자리를 살짝 부식시켜 리튬이온이 좀 더 쉽게 드나들 수 있게 하고, 여기에 실리콘 나노층을 입혀 에너지 밀도를 높이는 연구도 진행되었다. 그 결과 기존 흑연 음극에 비해 충전 시간과 속도가 모두 개선된 음극 소재를 개발하는 등 효과적인 전극재료의 변경을 위한 연구들이 진행 중이다.<ref>R.E.F 15기 김상재, 〈[http://www.energycenter.co.kr/news/articleView.html?idxno=932 리튬이온배터리 : 반도체 시대를 지나 배터리 시대로]〉, 《에너지설비관리》, 2019-12-02</ref>  
+
사실 더 오래 가고 빨리 충전되는 배터리를 만들려면 전극의 성능이 좋아야 한다. 현재 리튬이온배터리의 경우 음극재로 [[흑연]]이 널리 쓰이고 있다. 흔하고 싼 재료인데다 층상 구조라 틈새에 [[리튬이온[[이 쉽게 들어갔다가(충전) 나올 수 있고(방전), 이 과정이 반복돼도 안정적이기 때문이다. 다만 에너지 밀도가 높지 않고 충전 속도도 빠르지 않다. 흑연의 가장자리를 살짝 부식시켜 리튬이온이 좀 더 쉽게 드나들 수 있게 하고, 여기에 실리콘 나노층을 입혀 에너지 밀도를 높이는 연구도 진행되었다. 그 결과 기존 흑연 음극에 비해 충전 시간과 속도가 모두 개선된 음극 소재를 개발하는 등 효과적인 전극재료의 변경을 위한 연구들이 진행 중이다.<ref>R.E.F 15기 김상재, 〈[http://www.energycenter.co.kr/news/articleView.html?idxno=932 리튬이온배터리 : 반도체 시대를 지나 배터리 시대로]〉, 《에너지설비관리》, 2019-12-02</ref>  
 
{{자세히|음극재}}
 
{{자세히|음극재}}
  

위키원에서의 모든 기여는 다른 기여자가 편집, 수정, 삭제할 수 있다는 점을 유의해 주세요. 만약 여기에 동의하지 않는다면, 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다 (자세한 사항은 위키원:저작권 문서를 보세요). 저작권이 있는 내용을 허가 없이 저장하지 마세요!

취소 | 편집 도움말 (새 창에서 열림)