인공신경망

위키원
Dbsdk6937 (토론 | 기여)님의 2019년 9월 19일 (목) 10:18 판 (역사)
이동: 둘러보기, 검색

인공신경망(Artificial Neural Network)은 사람 또는 동물 두뇌의 신경망에 착안하여 구현된 컴퓨팅 시스템으로 인간의 신경을 흉내낸 머신러닝 기법이다.

개요

역사

  • 1940년대
인간 기억에 대한 연구는 워렌 맥클록(Warren McCulloch)과 월터 피츠(Walter Pitts)가 뉴런이 작동하는 방법에 관해 논문을 작성하던 1943년에 큰 변화를 맞이한다. 맥클록은 철학과 의학분야에서 학위를 받고 신경정신과 교수였으며, 월터 피츠는 뇌신경 시스템에 관심이 많은 수학자였다. 이들은 전기스위치처럼 끄고 켤 수 있는 인공 신경을 그물망 형태로 연결하면 인공 신경이 사람의 뇌에서 동작하는 간단한 기능을 흉내 낼 수 있다는 것을 이론적으로 증명했다. 이것이 최초의 뉴런 인공신경망 모델이다. 당시 이 모델은 단순한 선형 모델이었기 때문에 한계가 있었지만 퍼셉트론(perceptron)등 이후의 인공신경망 연구로 이어진다. 1940년대 후반에 심리학자인 도널드 헤비안(Donald Hebb)은 신경가소성의 원리에 근거한 학습의 기본 가정인 헤비안 학습(Hebbian learning)을 만들었다. 헤비안 학습은 전형적인 자율학습으로 장기강화(long term potentiation)의 초기모델이 된다.


인공지능 연구가 초창기이던 시절 뉴욕 코넬 항공 공학 연구소 컴퓨터 과학지인 프랭크 로젠블라트(Frank Rosenblatt)

종류

퍼셉트론