TF-IDF

위키원
realmoney (토론 | 기여)님의 2019년 2월 15일 (금) 17:22 판
이동: 둘러보기, 검색

TF-IDF 방식은 Term Frequency-Inverse Document Frequency의 약자이며, 단어가 문서에서 얼마나 중요한지를 반영하기 위한 숫자 통계이다. 오늘날 가장 인기 있는 용어 가중법 중 하나이며, 디지털 도서관의 텍스트 기반 권장 시스템의 83%가 이 방식을 사용하고 키워드 검색을 기반으로 하는 검색엔진도 이 방식을 사용한다.

개념

TF-IDF 방식(Term Frequency-Inverse Document Frequency)은 정보 검색 및 텍스트 마이닝, 사용자 모델링 등에서 이용하는 가중치이며, 여러 단어로 이루어진 문서가 있을 때 포함된 특정 단어가 특정 문서 내에서 얼마나 중요한 지 단어와 문서의 연관성을 나타내는 통계적인 수치이다. 즉 발생 빈도는 적어도 중요한 항목에 가중치를 주기 위해 사용한다. TF는 단어의 빈도(Term Frequency)의 약자로 특정 단어가 문서에 나오는 빈도 수를 알 수 있다는 의미이다. 그리고 IDF는 DF의 반대(Inverse)이며, DF는 Document Frequency로 전체 문서 중에서 특정 단어를 포함하는 문서의 빈도를 의미한다. 이것을 역문서 빈도라고 부른다. 그래서 단어의 빈도를 의미하는 TF와 역문서 빈도를 의미하는 IDF 두 값을 곱한 것이 TF-IDF이다. TF-IDF의 값은 문서 내 단어의 빈도가 높거나 전체 문서 중 특정 단어를 포함한 문서가 적을수록 높다. 예를 들어 ‘TPS’라는 단어가 일반적인 문서들 사이에서 잘 나오지 않으므로, IDF 값은 높아지게 되고 문서의 핵심 단어가 될 수 있다. 하지만 ‘TPS’에 대한 문서를 모아둘 경우 이 단어는 상투어가 되기 때문에, 각 문서들을 세분화하고 구분할 수 있는 다른 단어들이 높은 가중치를 얻게 된다. TF-IDF 방식은 문서의 핵심어 추출, 검색 엔진 내 검색 결과 순위의 결정, 문서들 사이의 유사성 측정 및 분류 등의 용도로 사용되고 있다. 그뿐 아니라 다른 알고리즘과의 결합과 변형을 통해 특정 상품에 대한 평이 과도하게 부정적 또는 긍정적인 문서를 분류해 편향적인 리뷰 등을 걸러낼 수 있는 시스템을 만들 수도 있다.

역사

TF는 정보 검색의 아버지로 불리는 IBM 연구원 한스 피터 룬(Hans Peter Luhn, 1896~1964)이 1957년에 제시한 이론이다. 그는 1950년대 정보 검색 프로세스 및 자동 초록 작성 방법에 관심이 많았다. 그는 늘어만가는 문서들을 일일이 코딩하는 대신에 기계로 대체할 수 있는 방법을 찾고 있었다. 그때 그는 중요한 단어와 아이디어가 특정 문서에 등장하는 빈도가 더 높다는 전제를 발견했다. 그래서 처음에는 문서를 인덱싱(Indexing)하는 작업에 이 명제를 적용했다. 그 후 그는 자동 초록 작성(Abstracting) 기술에도 적용했다. 빈발하는 단어들에 우선 순위를 적용함으로써 정보 검색의 효율성을 높였으며 초록 작성에도 도움을 얻기 위한 목적이었다. 그의 명제는 IDF와 만나면서 완성체의 개념이 되었다.

수학적 설명

Tf(t,d).JPG
Idf(t,d).JPG
Tfidf.JPG
























































































예시

TF-IDF예시.JPG

D2 문서의 Not만 log2로 값이 나오게 된다. 즉 Not이라는 특정 단어가 D2 문서와 관계가 높다는 사실을 알 수 있다.

참고 자료