"양자얽힘"의 두 판 사이의 차이
잔글 |
|||
1번째 줄: | 1번째 줄: | ||
'''양자얽힘'''<!--양자 얽힘-->(quantum entanglement)이란 하나의 [[입자]]를 둘로 쪼개서 아주 먼 거리에 위치시키더라도 한 쪽의 [[스핀]](spin) 방향이 정해지면 동시에 다른 쪽의 스핀 방향이 반대로 정해지는 현상을 말한다. 예를 들어 [[양자]] 하나를 [[지구]]에 두고, 그와 얽혀 있는 다른 양자 하나를 100만 광년 떨어진 먼 [[우주]]에 두더라도, 지구의 양자가 [[스핀업]]이 되면 먼 우주의 양자는 동시에 [[스핀다운]]이 되는 현상이다. 만약 [[빛]]을 이용해 정보를 주고받을 경우 100만년이나 걸리지만, 양자얽힘 현상을 이용하면 정보를 실시간으로 주고받을 수 있다. 양자얽힘 현상을 이용하여 빛보다 빠른 [[양자통신]]을 구현할 수 있다. | '''양자얽힘'''<!--양자 얽힘-->(quantum entanglement)이란 하나의 [[입자]]를 둘로 쪼개서 아주 먼 거리에 위치시키더라도 한 쪽의 [[스핀]](spin) 방향이 정해지면 동시에 다른 쪽의 스핀 방향이 반대로 정해지는 현상을 말한다. 예를 들어 [[양자]] 하나를 [[지구]]에 두고, 그와 얽혀 있는 다른 양자 하나를 100만 광년 떨어진 먼 [[우주]]에 두더라도, 지구의 양자가 [[스핀업]]이 되면 먼 우주의 양자는 동시에 [[스핀다운]]이 되는 현상이다. 만약 [[빛]]을 이용해 정보를 주고받을 경우 100만년이나 걸리지만, 양자얽힘 현상을 이용하면 정보를 실시간으로 주고받을 수 있다. 양자얽힘 현상을 이용하여 빛보다 빠른 [[양자통신]]을 구현할 수 있다. | ||
+ | |||
+ | == 개요 == | ||
+ | 양자역학에서 양자얽힘은 두 부분계 사이에서 존재할 수 잇는 일련의 비고전적인 상관관계를 의미한다. 얽힘은 두 부분계가 공간적으로 서로 멀리 떨어져 있어도 존재할 수 있다. 예를 들어, 두 입자를 일정한 양자 상태로 둬서 두 입자의 스핀이 항상 반대가 된다고 가정한다. 양자역학에 의하면 측정하기 전까지는 두 입자의 상태를 알 수 없다. 하지만 측정을 통해 그 순간 한 계의 상태가 결정되고 이는 즉시 그 계와 얽혀 있는 다른 계의 상태까지 결정한다. 마치 정보가 한 계에서 다른 계로 순식간에 이동한 것처럼 보이는 착각이 든다. 이러한 양자 얽힘 개념이 등장한 후, 양자암호, 양자컴퓨터 등의 연구 및 개발, 실험 등은 꾸준히 진행되고 있으며, 이를 통해 양자얽힘 이론의 예측을 실증할 수 있었다. 한편, 한쪽에서는 철학적인 논의도 꾸준히 진행되었는데, 그 중 하나는 양자얽힘 현상이 국소성의 원리를 위배한다는 주제이다. 국소성의 원리는 계의 상태에 관한 정보가 항상 그 계의 주위를 통해서 만 매개될 수 있다는 원리를 말하는데, 만약 양자얽힘 현상에 의해서 정보가 전달된다면 별도로 주위를 통하지 않고도 정보를 전달할 수 있기 때문에 국소성의 원리와 모순된다. 결국 양자 얽힘 과정에서 실제로 정보가 어떤식으로 전달되는지에 대한 논의는 계속 진행되었다. | ||
+ | |||
+ | 양자얽힘은 국소성의 원리를 위반하지만, 빛보다 빨리 정보를 전달할 수 없기 때문에 상대성 이론을 위배할 수 없다. 양자얽힘을 통하여 고전적인 정보와 양자역학적인 정보를 함께 보낼 수 있는 방법이 존재하는데, 이것을 바로 양자전송이라고 부른다. 그러나 이 경우에도 역시 정보를 빛보다 빠르게 전송하는 것은 불가능하다.<ref> 양자 얽힘 위키백과 - https://ko.wikipedia.org/wiki/%EC%96%91%EC%9E%90_%EC%96%BD%ED%9E%98 </ref> | ||
+ | |||
+ | == 배경 == | ||
+ | |||
+ | == 개념 == | ||
+ | |||
+ | == 예제 == | ||
+ | |||
+ | {{각주}} | ||
+ | |||
+ | == 참고자료 == | ||
+ | * 양자 얽힘 위키백과 - https://ko.wikipedia.org/wiki/%EC%96%91%EC%9E%90_%EC%96%BD%ED%9E%98 | ||
== 같이 보기 == | == 같이 보기 == |
2020년 8월 13일 (목) 17:28 판
양자얽힘(quantum entanglement)이란 하나의 입자를 둘로 쪼개서 아주 먼 거리에 위치시키더라도 한 쪽의 스핀(spin) 방향이 정해지면 동시에 다른 쪽의 스핀 방향이 반대로 정해지는 현상을 말한다. 예를 들어 양자 하나를 지구에 두고, 그와 얽혀 있는 다른 양자 하나를 100만 광년 떨어진 먼 우주에 두더라도, 지구의 양자가 스핀업이 되면 먼 우주의 양자는 동시에 스핀다운이 되는 현상이다. 만약 빛을 이용해 정보를 주고받을 경우 100만년이나 걸리지만, 양자얽힘 현상을 이용하면 정보를 실시간으로 주고받을 수 있다. 양자얽힘 현상을 이용하여 빛보다 빠른 양자통신을 구현할 수 있다.
개요
양자역학에서 양자얽힘은 두 부분계 사이에서 존재할 수 잇는 일련의 비고전적인 상관관계를 의미한다. 얽힘은 두 부분계가 공간적으로 서로 멀리 떨어져 있어도 존재할 수 있다. 예를 들어, 두 입자를 일정한 양자 상태로 둬서 두 입자의 스핀이 항상 반대가 된다고 가정한다. 양자역학에 의하면 측정하기 전까지는 두 입자의 상태를 알 수 없다. 하지만 측정을 통해 그 순간 한 계의 상태가 결정되고 이는 즉시 그 계와 얽혀 있는 다른 계의 상태까지 결정한다. 마치 정보가 한 계에서 다른 계로 순식간에 이동한 것처럼 보이는 착각이 든다. 이러한 양자 얽힘 개념이 등장한 후, 양자암호, 양자컴퓨터 등의 연구 및 개발, 실험 등은 꾸준히 진행되고 있으며, 이를 통해 양자얽힘 이론의 예측을 실증할 수 있었다. 한편, 한쪽에서는 철학적인 논의도 꾸준히 진행되었는데, 그 중 하나는 양자얽힘 현상이 국소성의 원리를 위배한다는 주제이다. 국소성의 원리는 계의 상태에 관한 정보가 항상 그 계의 주위를 통해서 만 매개될 수 있다는 원리를 말하는데, 만약 양자얽힘 현상에 의해서 정보가 전달된다면 별도로 주위를 통하지 않고도 정보를 전달할 수 있기 때문에 국소성의 원리와 모순된다. 결국 양자 얽힘 과정에서 실제로 정보가 어떤식으로 전달되는지에 대한 논의는 계속 진행되었다.
양자얽힘은 국소성의 원리를 위반하지만, 빛보다 빨리 정보를 전달할 수 없기 때문에 상대성 이론을 위배할 수 없다. 양자얽힘을 통하여 고전적인 정보와 양자역학적인 정보를 함께 보낼 수 있는 방법이 존재하는데, 이것을 바로 양자전송이라고 부른다. 그러나 이 경우에도 역시 정보를 빛보다 빠르게 전송하는 것은 불가능하다.[1]
배경
개념
예제
각주
참고자료
같이 보기