"양자얽힘"의 두 판 사이의 차이
7번째 줄: | 7번째 줄: | ||
== 배경 == | == 배경 == | ||
+ | 양자얽힘은 양자역학의 [[코펜하겐 해석]]에서 유도되는 결론 중 하나이지만, 비직관성에 의해서 아이슈타인을 비롯한 여러 과학자들에게 환영받지 못했다. 이들은 양자역학의 표준해석방법인 코펜하겐 해석을 받아들이지 않았고, 그 대신 [[숨은 변수 이론]]을 만들었다. 이 이론은 아직 알려지지 않은 결정론적 매개변수가 상호작용을 유도한다는 내용인데, 코펜하겐 해석의 확률적인 해석을 반대하는 입장이었다. 1935년, [[알베르트 아이슈타인]], [[보리스 포돌스키]], [[네이선 로젠]]은 양자역학의 비국소적이고 비직관적인 현상에 대한 사고 실험인 EPR 역설을 발표했다. 양자역학과 비슷한 물리 현상을 예측하면서 국소성 원리 또한 만족하는 숨은 변수 이론을 찾기 위해 노력했다. 1964년에 [[존 벨]]은 모든 숨은 변수 이론이 만족하지만 양자역학은 만족하지 않는 벨 부등식이라는 조건을 유도했다. 실험 결과, 실제 물리 현상은 벨 부등식을 다르지 않는다는 사실이 밝혀져, 자연계는 숨은 변수 이론으로는 기술할 수 없다. | ||
== 개념 == | == 개념 == | ||
+ | === 정의 === | ||
+ | [[브라-켓 표기법]]을 사용한다. 서로 상호작용하지 않는 두 부분계 A와 B로 이루어진 전체 계를 생각해본다. 그렇다면 전체 계의 [[힐베르트 공간]]은 A와 B의 힐베르트 공간의 [[텐서 곱]]이다. | ||
+ | <math> H = H_{A} \otimes H_{B} </math> | ||
+ | 식이 위와 같다면 전체 계의 상태 <math></math> 가운데 일부는 다음과 같이 쓸 수 있다. | ||
+ | <math></math> | ||
+ | 이렇게 두 부분계의 상태의 텐서 곱으로 나타낸 상태는 분리가능한 상태라고 부른다. 반대로 전체 계의 상태 중에서 이와 같이 두 부분계의 상태의 텐서 곱으로 나타낼 수 없는 상태가 얽힌 상태이다. 예를 들어 다음과 같이 <math></math>와 <math></math>가 평행하지 않고, <math></math>와 <math></math>가 평행하지 않을 는 일반적으로 얽힌 상태이다. | ||
+ | <math></math> | ||
+ | 수학적으로, 양자역학적 상태는 힐베르트 공간 <math></math>의 반직선으로 이루어진 [[사영 힐베르트 공간]]<math></math>의 원소이다. 두 부분계의 상태의 텐서 곱 <math></math>을 나타내는 함수는 [[세그레 매장]]이라고 한다. 따라서 분리가능한 상태는 세그레 매장의 치역이며, 그 여집합이 얽힌 상태이다. | ||
== 예제 == | == 예제 == | ||
+ | 다음 예시에서는 A와 B가 각각 두 개의 상태 <math></math>와 <math></math>을 가질 수 있는 계라고 가정한다. 대표적으로 전자의 스핀 등이 있다. 이때 다음과 같은 상태는 얽혀 있다. | ||
+ | <math></math> | ||
+ | 이런 상태에서 A의 스핀을 측정할 시, 다음의 두 결과 중 하나가 50% 확률로 일어날 수 있다. | ||
+ | # A의 스핀을 0으로 측정한다. 이에 따라 계의 상태는 <math></math>로 바뀐다. | ||
+ | # A의 스핀을 1로 측정한다. 이에 따라 계의 상태는 <math></math>로 바뀐다. | ||
+ | 만약 A의 스핀을 0으로 측정한다면, 뒤 따라 B의 스핀을 측정했을 때 100% 확률로 매번 1을 얻을 것이다. 반대로, A의 스핀을 1로 측정한다면, 뒤 이어 B의 스핀을 측정했을 때 매번 0을 얻는다. 그러나 A의 스핀을 먼저 측정하지 않고 B의 스핀을 측정한다면, B는 50% 확률로 0이나 1을 얻는다. 이에 따라, A의 스핀의 측정이 B의 스핀의 측정에 일종의 영향을 줄 수 있다. 이는 A와 B가 공간적으로 매우 멀리 떨어져 있어도 가능하다. 이것은 EPR 역설의 한 형태이다. 하지만 얽힘 현상으로 먼 거리를 거쳐 정보를 전송하는 건 불가능하다. A를 측정하여 어떤 결과를 얻을지 알 수 없기 때문이다. | ||
+ | |||
+ | 만약 스핀의 상태를 복제할 수 있다면 다음과 같이 정보를 전달하는 방법을 생각해 볼 수 있다. A계에서 한 비트를 전송하고 싶다고 한다면, 0을 전송하려면 아무것도 하지 않고, 1을 전송하려면 A의 스핀을 측정한다. 그렇다면, B에서 전송한 결과를 다음과 같이 받을 수 있다. 우선, B의 스핀 상태를 여러번 복제하고, 복제한 상태들의 스핀을 각각 측정한다. 만약 A의 스핀을 측정하지 않았고, A가 0을 전송했으면, B의 복제본들의 측정 결과는 제각각일것이나, 만약 A의 스핀을 측정하고 A가 1을 전송했다면, B의 복제본들의 스핀은 모두 0이거나 모두 1이어야 한다. 그러나 양자역학적 상태는 복제 불가는 정리에 의해서 정확히 복제하는 것이 불가능하고, 이러한 정보 전달 방법은 불가능하다. | ||
+ | |||
+ | === 스핀 단일 상태의 상관 관계 === | ||
+ | 위와 같은 상관관계는 고전적으로 설명할 수있다. 예를 들어, A의 스핀과 B의 스핀이 항상 반대이지만, 어느 스핀이 0이고 어느 스핀이 1인지는 알 수 없을 수도 있다. 그러나 얽힘은 다음과 같은 예시처럼 고전적으로 설명하기 힘든 상관관계를 가질 수도 있다. 두 개의 전자로 이루어진 계를 생각해봤을 때, 전자는 스핀이 <math></math>인 [[페르미온]]이므로, [[페르미-디랙 통계]]로 인하여 계의 파동 함수는 반대칭적이다. 그 중 총 스핀이 0인 스핀 단일 상태는 다음과 같다. | ||
+ | <math></math> | ||
+ | 위의 식은 명시적으로 스핀이 양자화된 방향을 표시했다. 위의 식과 같은 상태의 두 입자로 이루어진 계에서 하나의 스핀을 측정하는 경우, +나 -가 나올 확률은 반반일 것이다. 이 경우도 위와 마찬가지로 다음과 같다. | ||
+ | # A를 측정해서 +가 나왔다면, 계 B를 측정하면 반드시 -가 나와야 한다. 즉, A를 +로 측정하면 계의 상태는 <math></math>로 바뀐다. | ||
+ | # A를 측정해서 -가 나왔다면, 계 B를 측정하면 반드시 +가 나와야 한다. 즉, A를 -로 측정하면 계의 상태는 <math></math>로 바뀐다. | ||
+ | 이러한 사고 실험은 실제로 수행하려면 총스핀이 0인 입자가 붕괴하는 과정을 사용해야만 한다. 각 운동량 보존에 의해 붕괴된 두 입자의 스핀합도 0이어야 하며, 따라서 동일한 입자가 생성될 경우에는 스핀 단일 상태로 생성되게 된다. 이 같은 예로는 에타 중간자가 뮤온 쌍으로 붕괴하는 현상이 있다. | ||
+ | <math></math> | ||
+ | 하지만 이러한 현상은 일어날 확률이 <math></math>로 매우 작기 때문에 실험에는 부적합하다. 다른 예로는, 작은 운동 에너지를 갖는 두 양성자가 출동해서 다시 튀어나가는 현상으로 들 수 있다. | ||
+ | <math></math> | ||
+ | [[파울리 배타 원리]]때문에 상호작용한 양성자들은 <math></math> 상태에 있고, 산란된 양성자들의 스핀 상태는 양성자들이 멀리 떨어지 상태에서도 위와 같이 얽혀 있다. 다시 측정 결과로 돌아와서 보면 위의 순수한 계의 예시와 별 다른 것이 없어 보인다. 만약 흰 공과 검정색 공이 든 항아리에서 공 하나를 꺼내 확인해본다고 한다면, 흰 공이 앨리스에게로 갔다면, 밥은 검은색 공을 꺼내게 된다. 그렇다면 위에서처럼 측정 전에는 알지 못했을 뿐, 항아리 속의 흰공과 검은공을 측정하는 것처럼 똑같이 설명할 수 있지 않을까싶지만, 위의 문제는 항아리처럼 쉬운 문제는 아니다. 스핀이 방향성을 갖기 때문이다. 스핀 단일 상태를 x나 y방향의 스핀 고유 상태로 표시하면, x방향의 고유상태와 y방향의 고유상태는 | ||
+ | <math></math> | ||
+ | 와 같은 관계를 가지고 있다. 따라서 스핀 단일 상태는 | ||
+ | <math>\mid singlet</math>〉<math>= \frac{1}{\sqrt{2}}</math> | ||
+ | 와 같이 표현될 수 있다. x방향의 스핀을 측정한 뒤 B의 z방향 스핀을 측정한다면, A의 x방향 스핀 측정 결과에 상관없이 B의 z방향 스핀은 +와 -가 반반씩 측정될 것이다. A의 x방향 스핀 정보를 측정하면 계의 상태가 <math></math> 또는 <math></math>로 붕괴할 것이기 때문에 B의 z방향 성분은 무작위로 측정된다. | ||
+ | ;결과 | ||
+ | * A와 B가 서로 수직한 다른 방향의 스핀 성분을 측정할 때, 두 측정 사이의 상관 관계는 없다. | ||
+ | * A와 B가 같은 방향을 측정할 때, 두 측정은 100% 상관관계를 갖는다. | ||
+ | * A의 스핀을 측정하지 않는다면, B는 측정 방향에 상관없이 무작위한 결과를 내놓는다. | ||
+ | |||
+ | :{|class=wikitable width=250 | ||
+ | !align=center|A의 측정 결과 | ||
+ | !align=center|B의 측정 결과 | ||
+ | |- | ||
+ | |align=center|<math> \mid \widehat{z} + </math>〉<math>_{A}</math> | ||
+ | |align=center|<math> \mid \widehat{z} - </math>〉<math>_{B}</math> | ||
+ | |- | ||
+ | |align=center|<math> \mid \widehat{z} - </math>〉<math>_{A}</math> | ||
+ | |align=center|<math> \mid \widehat{z} + </math>〉<math>_{B}</math> | ||
+ | |- | ||
+ | |align=center|<math> \mid \widehat{x} + </math>〉<math>_{A}</math> | ||
+ | |align=center|<math> \mid \widehat{x} - </math>〉<math>_{B}</math> | ||
+ | |- | ||
+ | |align=center|<math> \mid \widehat{x} - </math>〉<math>_{A}</math> | ||
+ | |align=center|<math> \mid \widehat{x} + </math>〉<math>_{B}</math> | ||
+ | |- | ||
+ | |align=center|<math> \mid \widehat{z} + </math>〉<math>_{A}</math> | ||
+ | |align=center|<math> \mid \widehat{x} + </math>〉<math>_{B}</math> | ||
+ | |||
+ | |- | ||
+ | |align=center|<math> \mid \widehat{z} + </math>〉<math>_{A}</math> | ||
+ | |align=center|<math> \mid \widehat{x} - </math>〉<math>_{B}</math> | ||
+ | |- | ||
+ | |align=center|<math> \mid \widehat{z} - </math>〉<math>_{A}</math> | ||
+ | |align=center|<math> \mid \widehat{x} + </math>〉<math>_{B}</math> | ||
+ | |- | ||
+ | |align=center|<math> \mid \widehat{z} - </math>〉<math>_{A}</math> | ||
+ | |align=center|<math> \mid \widehat{x} - </math>〉<math>_{B}</math> | ||
+ | |- | ||
+ | |align=center|<math> \mid \widehat{x} + </math>〉<math>_{A}</math> | ||
+ | |align=center|<math> \mid \widehat{z} + </math>〉<math>_{B}</math> | ||
+ | |- | ||
+ | |align=center|<math> \mid \widehat{x} + </math>〉<math>_{A}</math> | ||
+ | |align=center|<math> \mid \widehat{z} - </math>〉<math>_{B}</math> | ||
+ | |- | ||
+ | |align=center|<math> \mid \widehat{x} - </math>〉<math>_{A}</math> | ||
+ | |align=center|<math> \mid \widehat{z} + </math>〉<math>_{B}</math> | ||
+ | |- | ||
+ | |align=center|<math> \mid \widehat{x} - </math>〉<math>_{A}</math> | ||
+ | |align=center|<math> \mid \widehat{z} - </math>〉<math>_{B}</math> | ||
+ | |} | ||
+ | 따라서, B의 측정 결과는 A에 행새진 측정 방법에 따라 달라지는 것처럼 보인다. 이는 양자역학적으로 측정이 단순히 기존에 있는 상태를 건드리지 않고 기록하는 과정이 아니라, 계의 상태를 바꾸기 때문이다. A의 z방향 스핀 성분을 +로 관찰하면, 계의 상태는 <math></math>로 바뀐다. 즉, 계의 일부분을 측정해도 계 전체 상태가 바뀐다. | ||
{{각주}} | {{각주}} |
2020년 8월 14일 (금) 11:20 판
양자얽힘(quantum entanglement)이란 하나의 입자를 둘로 쪼개서 아주 먼 거리에 위치시키더라도 한 쪽의 스핀(spin) 방향이 정해지면 동시에 다른 쪽의 스핀 방향이 반대로 정해지는 현상을 말한다. 예를 들어 양자 하나를 지구에 두고, 그와 얽혀 있는 다른 양자 하나를 100만 광년 떨어진 먼 우주에 두더라도, 지구의 양자가 스핀업이 되면 먼 우주의 양자는 동시에 스핀다운이 되는 현상이다. 만약 빛을 이용해 정보를 주고받을 경우 100만년이나 걸리지만, 양자얽힘 현상을 이용하면 정보를 실시간으로 주고받을 수 있다. 양자얽힘 현상을 이용하여 빛보다 빠른 양자통신을 구현할 수 있다.
개요
양자역학에서 양자얽힘은 두 부분계 사이에서 존재할 수 잇는 일련의 비고전적인 상관관계를 의미한다. 얽힘은 두 부분계가 공간적으로 서로 멀리 떨어져 있어도 존재할 수 있다. 예를 들어, 두 입자를 일정한 양자 상태로 둬서 두 입자의 스핀이 항상 반대가 된다고 가정한다. 양자역학에 의하면 측정하기 전까지는 두 입자의 상태를 알 수 없다. 하지만 측정을 통해 그 순간 한 계의 상태가 결정되고 이는 즉시 그 계와 얽혀 있는 다른 계의 상태까지 결정한다. 마치 정보가 한 계에서 다른 계로 순식간에 이동한 것처럼 보이는 착각이 든다. 이러한 양자 얽힘 개념이 등장한 후, 양자암호, 양자컴퓨터 등의 연구 및 개발, 실험 등은 꾸준히 진행되고 있으며, 이를 통해 양자얽힘 이론의 예측을 실증할 수 있었다. 한편, 한쪽에서는 철학적인 논의도 꾸준히 진행되었는데, 그 중 하나는 양자얽힘 현상이 국소성의 원리를 위배한다는 주제이다. 국소성의 원리는 계의 상태에 관한 정보가 항상 그 계의 주위를 통해서 만 매개될 수 있다는 원리를 말하는데, 만약 양자얽힘 현상에 의해서 정보가 전달된다면 별도로 주위를 통하지 않고도 정보를 전달할 수 있기 때문에 국소성의 원리와 모순된다. 결국 양자 얽힘 과정에서 실제로 정보가 어떤식으로 전달되는지에 대한 논의는 계속 진행되었다.
양자얽힘은 국소성의 원리를 위반하지만, 빛보다 빨리 정보를 전달할 수 없기 때문에 상대성 이론을 위배할 수 없다. 양자얽힘을 통하여 고전적인 정보와 양자역학적인 정보를 함께 보낼 수 있는 방법이 존재하는데, 이것을 바로 양자전송이라고 부른다. 그러나 이 경우에도 역시 정보를 빛보다 빠르게 전송하는 것은 불가능하다.[1]
배경
양자얽힘은 양자역학의 코펜하겐 해석에서 유도되는 결론 중 하나이지만, 비직관성에 의해서 아이슈타인을 비롯한 여러 과학자들에게 환영받지 못했다. 이들은 양자역학의 표준해석방법인 코펜하겐 해석을 받아들이지 않았고, 그 대신 숨은 변수 이론을 만들었다. 이 이론은 아직 알려지지 않은 결정론적 매개변수가 상호작용을 유도한다는 내용인데, 코펜하겐 해석의 확률적인 해석을 반대하는 입장이었다. 1935년, 알베르트 아이슈타인, 보리스 포돌스키, 네이선 로젠은 양자역학의 비국소적이고 비직관적인 현상에 대한 사고 실험인 EPR 역설을 발표했다. 양자역학과 비슷한 물리 현상을 예측하면서 국소성 원리 또한 만족하는 숨은 변수 이론을 찾기 위해 노력했다. 1964년에 존 벨은 모든 숨은 변수 이론이 만족하지만 양자역학은 만족하지 않는 벨 부등식이라는 조건을 유도했다. 실험 결과, 실제 물리 현상은 벨 부등식을 다르지 않는다는 사실이 밝혀져, 자연계는 숨은 변수 이론으로는 기술할 수 없다.
개념
정의
브라-켓 표기법을 사용한다. 서로 상호작용하지 않는 두 부분계 A와 B로 이루어진 전체 계를 생각해본다. 그렇다면 전체 계의 힐베르트 공간은 A와 B의 힐베르트 공간의 텐서 곱이다.
식이 위와 같다면 전체 계의 상태 가운데 일부는 다음과 같이 쓸 수 있다.
이렇게 두 부분계의 상태의 텐서 곱으로 나타낸 상태는 분리가능한 상태라고 부른다. 반대로 전체 계의 상태 중에서 이와 같이 두 부분계의 상태의 텐서 곱으로 나타낼 수 없는 상태가 얽힌 상태이다. 예를 들어 다음과 같이 와 가 평행하지 않고, 와 가 평행하지 않을 는 일반적으로 얽힌 상태이다.
수학적으로, 양자역학적 상태는 힐베르트 공간 의 반직선으로 이루어진 사영 힐베르트 공간의 원소이다. 두 부분계의 상태의 텐서 곱 을 나타내는 함수는 세그레 매장이라고 한다. 따라서 분리가능한 상태는 세그레 매장의 치역이며, 그 여집합이 얽힌 상태이다.
예제
다음 예시에서는 A와 B가 각각 두 개의 상태 와 을 가질 수 있는 계라고 가정한다. 대표적으로 전자의 스핀 등이 있다. 이때 다음과 같은 상태는 얽혀 있다.
이런 상태에서 A의 스핀을 측정할 시, 다음의 두 결과 중 하나가 50% 확률로 일어날 수 있다.
- A의 스핀을 0으로 측정한다. 이에 따라 계의 상태는 로 바뀐다.
- A의 스핀을 1로 측정한다. 이에 따라 계의 상태는 로 바뀐다.
만약 A의 스핀을 0으로 측정한다면, 뒤 따라 B의 스핀을 측정했을 때 100% 확률로 매번 1을 얻을 것이다. 반대로, A의 스핀을 1로 측정한다면, 뒤 이어 B의 스핀을 측정했을 때 매번 0을 얻는다. 그러나 A의 스핀을 먼저 측정하지 않고 B의 스핀을 측정한다면, B는 50% 확률로 0이나 1을 얻는다. 이에 따라, A의 스핀의 측정이 B의 스핀의 측정에 일종의 영향을 줄 수 있다. 이는 A와 B가 공간적으로 매우 멀리 떨어져 있어도 가능하다. 이것은 EPR 역설의 한 형태이다. 하지만 얽힘 현상으로 먼 거리를 거쳐 정보를 전송하는 건 불가능하다. A를 측정하여 어떤 결과를 얻을지 알 수 없기 때문이다.
만약 스핀의 상태를 복제할 수 있다면 다음과 같이 정보를 전달하는 방법을 생각해 볼 수 있다. A계에서 한 비트를 전송하고 싶다고 한다면, 0을 전송하려면 아무것도 하지 않고, 1을 전송하려면 A의 스핀을 측정한다. 그렇다면, B에서 전송한 결과를 다음과 같이 받을 수 있다. 우선, B의 스핀 상태를 여러번 복제하고, 복제한 상태들의 스핀을 각각 측정한다. 만약 A의 스핀을 측정하지 않았고, A가 0을 전송했으면, B의 복제본들의 측정 결과는 제각각일것이나, 만약 A의 스핀을 측정하고 A가 1을 전송했다면, B의 복제본들의 스핀은 모두 0이거나 모두 1이어야 한다. 그러나 양자역학적 상태는 복제 불가는 정리에 의해서 정확히 복제하는 것이 불가능하고, 이러한 정보 전달 방법은 불가능하다.
스핀 단일 상태의 상관 관계
위와 같은 상관관계는 고전적으로 설명할 수있다. 예를 들어, A의 스핀과 B의 스핀이 항상 반대이지만, 어느 스핀이 0이고 어느 스핀이 1인지는 알 수 없을 수도 있다. 그러나 얽힘은 다음과 같은 예시처럼 고전적으로 설명하기 힘든 상관관계를 가질 수도 있다. 두 개의 전자로 이루어진 계를 생각해봤을 때, 전자는 스핀이 인 페르미온이므로, 페르미-디랙 통계로 인하여 계의 파동 함수는 반대칭적이다. 그 중 총 스핀이 0인 스핀 단일 상태는 다음과 같다.
위의 식은 명시적으로 스핀이 양자화된 방향을 표시했다. 위의 식과 같은 상태의 두 입자로 이루어진 계에서 하나의 스핀을 측정하는 경우, +나 -가 나올 확률은 반반일 것이다. 이 경우도 위와 마찬가지로 다음과 같다.
- A를 측정해서 +가 나왔다면, 계 B를 측정하면 반드시 -가 나와야 한다. 즉, A를 +로 측정하면 계의 상태는 로 바뀐다.
- A를 측정해서 -가 나왔다면, 계 B를 측정하면 반드시 +가 나와야 한다. 즉, A를 -로 측정하면 계의 상태는 로 바뀐다.
이러한 사고 실험은 실제로 수행하려면 총스핀이 0인 입자가 붕괴하는 과정을 사용해야만 한다. 각 운동량 보존에 의해 붕괴된 두 입자의 스핀합도 0이어야 하며, 따라서 동일한 입자가 생성될 경우에는 스핀 단일 상태로 생성되게 된다. 이 같은 예로는 에타 중간자가 뮤온 쌍으로 붕괴하는 현상이 있다.
하지만 이러한 현상은 일어날 확률이 로 매우 작기 때문에 실험에는 부적합하다. 다른 예로는, 작은 운동 에너지를 갖는 두 양성자가 출동해서 다시 튀어나가는 현상으로 들 수 있다.
파울리 배타 원리때문에 상호작용한 양성자들은 상태에 있고, 산란된 양성자들의 스핀 상태는 양성자들이 멀리 떨어지 상태에서도 위와 같이 얽혀 있다. 다시 측정 결과로 돌아와서 보면 위의 순수한 계의 예시와 별 다른 것이 없어 보인다. 만약 흰 공과 검정색 공이 든 항아리에서 공 하나를 꺼내 확인해본다고 한다면, 흰 공이 앨리스에게로 갔다면, 밥은 검은색 공을 꺼내게 된다. 그렇다면 위에서처럼 측정 전에는 알지 못했을 뿐, 항아리 속의 흰공과 검은공을 측정하는 것처럼 똑같이 설명할 수 있지 않을까싶지만, 위의 문제는 항아리처럼 쉬운 문제는 아니다. 스핀이 방향성을 갖기 때문이다. 스핀 단일 상태를 x나 y방향의 스핀 고유 상태로 표시하면, x방향의 고유상태와 y방향의 고유상태는
와 같은 관계를 가지고 있다. 따라서 스핀 단일 상태는
〉
와 같이 표현될 수 있다. x방향의 스핀을 측정한 뒤 B의 z방향 스핀을 측정한다면, A의 x방향 스핀 측정 결과에 상관없이 B의 z방향 스핀은 +와 -가 반반씩 측정될 것이다. A의 x방향 스핀 정보를 측정하면 계의 상태가 또는 로 붕괴할 것이기 때문에 B의 z방향 성분은 무작위로 측정된다.
- 결과
- A와 B가 서로 수직한 다른 방향의 스핀 성분을 측정할 때, 두 측정 사이의 상관 관계는 없다.
- A와 B가 같은 방향을 측정할 때, 두 측정은 100% 상관관계를 갖는다.
- A의 스핀을 측정하지 않는다면, B는 측정 방향에 상관없이 무작위한 결과를 내놓는다.
A의 측정 결과 B의 측정 결과 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉
따라서, B의 측정 결과는 A에 행새진 측정 방법에 따라 달라지는 것처럼 보인다. 이는 양자역학적으로 측정이 단순히 기존에 있는 상태를 건드리지 않고 기록하는 과정이 아니라, 계의 상태를 바꾸기 때문이다. A의 z방향 스핀 성분을 +로 관찰하면, 계의 상태는 로 바뀐다. 즉, 계의 일부분을 측정해도 계 전체 상태가 바뀐다.
각주
참고자료
같이 보기