"소수 (prime number)"의 두 판 사이의 차이
99번째 줄: | 99번째 줄: | ||
* 파이썬 | * 파이썬 | ||
− | n=1000 | + | n=<font color=green>1000</font> |
− | a = [False,False] + [True]*(n-1) | + | a = [False,False] + [True]*(n-<font color=green>1</font>) |
primes=[] | primes=[] | ||
− | for i in range(2,n+1): | + | for i in range(<font color=green>2</font>,n+<font color=green>1</font>): |
if a[i]: | if a[i]: | ||
primes.append(i) | primes.append(i) | ||
− | for j in range(2*i, n+1, i): | + | for j in range(<font color=green>2</font>*i, n+<font color=green>1</font>, i): |
a[j] = False | a[j] = False | ||
print(primes)<ref name="에라토스테네스의 체"></ref> | print(primes)<ref name="에라토스테네스의 체"></ref> |
2019년 8월 1일 (목) 11:23 판
소수는 자신보다 작은 두 개의 자연수를 곱하여 만들 수 없는 1보다 큰 자연수를 의미한다. 예를 들어, 자연수 2, 3, 5의 약수는 1과 자기 자신뿐이기 때문에 자연수 2, 3, 5는 소수라고 할 수 있다.
개요
특징
- 소수는 1보다 큰 자연수이다. 즉, 1은 소수가 아니다.
- 소수의 약수는 1과 자기 자신뿐이다. 즉, 소수의 약수는 2개뿐이며, 역도 성립한다.
- 2는 소수이지만, 2를 제외한 모든 짝수는 2를 약수로 가지므로 소수가 아니다.
- 2, 3을 제외한 모든 소수는 자연수 n에 대해 6n-1 혹은 6n+1 꼴이다. 역은 성립하지 않는다.[1]
예제
- 에라토스테네스의 체(Sieve of Eratosthenes)
- 1~100 까지의 모든 소수를 구한다고 가정했을 때,
- 1은 제거
- 지워지지 않은 수 중 제일 작은 2를 소수로 채택하고, 나머지 2의 배수를 모두 지운다.
- 지워지지 않은 수 중 제일 작은 3을 소수로 채택하고, 나머지 3의 배수를 모두 지운다.
- 지워지지 않은 수 중 제일 작은 5을 소수로 채택하고, 나머지 5의 배수를 모두 지운다.
- 지워지지 않은 수 중 제일 작은 7을 소수로 채택하고, 나머지 7의 배수를 모두 지운다.
- 지워지지 않고 남은 수는 전부 소수이다.
12 3 45 67 891011 1213 14151617 1819 20212223 242526272829 3031 323334353637 38394041 4243 44454647 484950515253 545556575859 6061 626364656667 68697071 7273 747576777879 80818283 848586878889 9091929394959697 9899100
- C++
void getChe(int num) { int *arr; arr = (int *)malloc(sizeof(int) * num); int i = 2; // 입력받은 수 만큼 배열에 모두 초기화 해둔다. for (i = 2; i <= num; i++) { arr[i] = i; } for (i = 2; i <= num; i++) { if (arr[i] == 0) // 이미 체크된 수의 배수는 확인하지 않는다. continue; for (int j = i + i; j <= num; j += i) { // i를 제외한 i의 배수들은 0으로 체크 arr[j] = 0; } } // 출력 for (i = 2; i <= num; i++) { if (arr[i] != 0) cout << arr[i] << " "; } }[2]
- JAVA
public class PrimeNumber1 { public static void getPrime(int num, ArrayList<Integer> prime) { prime.add(2); for (int i = 2; i <= num; i++) { for (int j = 0; prime.size() > j; j++) { if (i % prime.get(j) == 0) break; // 소수가 아닌 경우 pass if (j + 1 == prime.size()) // 소수일 때 prime.add(i); } } for (Integer result : prime) { System.out.println(result); } } public static void main(String[] args) { ArrayList<Integer> prime = new ArrayList<Integer>(); long start = System.currentTimeMillis(); getPrime(30000, prime); long end = System.currentTimeMillis(); System.out.println("수행시간 : " + (end - start)); } }[3]
- 파이썬
n=1000 a = [False,False] + [True]*(n-1) primes=[] for i in range(2,n+1): if a[i]: primes.append(i) for j in range(2*i, n+1, i): a[j] = False print(primes)[2]
각주
- ↑ 김동이, 〈정수론〉, 《오픈튜토리얼스》, 2015-04-09
- ↑ 2.0 2.1 신매력, 〈(C++) 소수 구하기 최적의 알고리즘 (2) - 에라토스테네스의 체〉, 《티스토리》, 2013-09-29
- ↑ 신매력, 〈(JAVA) 소수 구하기 최적의 알고리즘 (1)〉, 《티스토리》, 2013-09-20
참고자료
- 〈소수 (수론)〉, 《위키백과》</ref>
- 수학방 공식 홈페이지 - https://mathbang.net/199
- 김동이, 〈정수론〉, 《오픈튜토리얼스》, 2015-04-09
- 〈2. 소수 구하기 - 에라토스테네스의 체〉, 《위키독스》
- 신매력, 〈(C++) 소수 구하기 최적의 알고리즘 (2) - 에라토스테네스의 체〉, 《티스토리》, 2013-09-29
- 신매력, 〈(JAVA) 소수 구하기 최적의 알고리즘 (1)〉, 《티스토리》, 2013-09-20
같이 보기
이 소수 (prime number) 문서는 암호 알고리즘에 관한 글로서 검토가 필요합니다. 위키 문서는 누구든지 자유롭게 편집할 수 있습니다. [편집]을 눌러 문서 내용을 검토·수정해 주세요.