"양자중첩"의 두 판 사이의 차이
7번째 줄: | 7번째 줄: | ||
== 개념 == | == 개념 == | ||
+ | 아주 작은 미시세계의 입자는 관측되기 전에는 두 가지 상태가 중첩된 형태이다. 즉, 오른쪽으로 도는 방향과 왼쪽으로 도는 방향이 있고, 두 방향 중 한 방향을 골라 그 쪽으로 돌아야 하는데, 관측되기 전에는 50% 확률로 두 상태가 존재한다. 이를 양자 중첩이라고 부른다. 전자의 스핀의 두 상태는 관측 전에는 둘 다 확률적으로 존재하고, 둘 다 중첩된 상태이다. 연산을 통해 큐비트를 관측하고, 관측을 통해 해당 큐비트는 0이나 1이 결정된다. 기존의 비트는 00, 01, 10, 11 등의 상태의 숫자 두 개가 담긴다. 즉 두 개의 정보로 네 가지 상태를 표현할 수 있다. 그러나 큐비트는 양자 중첩에 의해서 확률로 존재하기 때문에 그 확률을 표현하는 계수를 포함해서 네 개의 계수가 담긴다. 이 네 개의 계수를 정보라고 볼 수 있다. 따라서 양자 중첩은 기존의 트랜지스터보다 두 배 더 많이 연산할 수 있게 된다. 이를 통해 기존의 컴퓨터보다 2제곱 더 많은 연산을 수행할 수 있다. 즉, 10큐비트는 10비트보다 천배 더 많은 연산을 하며, 20큐비트는 20비트보다 백만 배 더 많은 연산을 할 수 있다.<ref name='브런치 모두의 과학'> 모두의 과학, 〈[https://brunch.co.kr/@sciforus/171 양자컴퓨터, 양자 중첩을 이해하면 보인다]〉, 《브런치》, 2020-05-13</ref> | ||
+ | |||
+ | === 큐비트 === | ||
+ | 양자중첩은 큐비트를 만든다. 이 큐비트는 양자비트라고도 불린다. 일반적인 컴퓨터는 비트를 기본적인 정보 단위로 사용하는데, 0과 1 두 가지 상태 중 하나를 선택한다. 실제로는 트랜지스터에서 전기가 통하는가, 그렇지 않은가 여부에 따라 두 상태에 0과 1을 부여한다. 즉, 한 개의 트랜지스터가 곧 하나의 정보 단위이며, 이는 1비트라고 불린다. 따라서 만약 트랜지스터가 두 개라면 00, 01, 10, 11이라는 네 가지 정보 중에서 하나를 선택할 수 있다. 양자 컴퓨터는 큐비트라는 단위를 사용한다. 기본적으로 하나의 큐비트는 네가지 정보를 담을 수 있는데, 이 큐비트는 양자비트라고도 불린다. 비트가 트랜지스터의 전류 허용 여부에 의해 결정되는 것처럼, 큐비트는 전자의 스핀 방향에 의해서 결정된다. 스핀은 전자의 회전 방향을 말하는데, 여기서 전자가 실제로 회전한다는 뜻은 아니다. 이 회전 방향이 주어진 자기장의 방향과 같은지, 아니면 다른지에 따라서 0과 1로 정해진다.<ref name='브런치 모두의 과학'></ref> | ||
+ | |||
=== 슈뢰딩거의 고양이 실험 === | === 슈뢰딩거의 고양이 실험 === | ||
2020년 8월 12일 (수) 13:27 판
양자중첩(Quantum superposition)이란
개요
양자중첩은 여러 상태가 확률적으로 하나의 양자에 동시에 존재하며, 측정하기 전까지는 양자 상태를 정확히 파악할 수 없는 상태를 가리킨다. 둘 이상의 양자 상태가 합쳐진 상태로, 측정하기 전까지는 측정에 의한 여러 결과 상태가 이미 확률적으로 동시에 존재한다. '슈뢰딩거의 고양이'실험으로 비유되는 원자 이하의 양자 세계에서 발생하는 현상이며, 양자는 여러 가지 상태를 동시에 가지고 있을 수 있고 측정하지 전까지는 그 상태를 알 수 없다. 또한 중첩된 양자는 관측하는 순간 중첩 상태가 붕괴되기 때문에 하나의 상태로 귀결된다.
양자 역학에서 자연은 불연속적이고 관측을 통해서 확률적으로 확인할 수 있는데, 예를 들자면 광자의 임의의 대각 편광을 수직 편광과 수평 편광 방향으로 관측할 때 확률적으로 수직 편광이나 수평 편광을 얻을 수 있다. 이때의 양자 중첩은 관측 전의 대각 편광이 관측 후에 수진 편광 상태나 수평 편광 상태가 확률적으로 발생하는 것이다. 추가로, 광자의 수직 편광이나 수평 편광 상태는 관측했을 때 50%의 확률로 45도 또는 -45도 대각 편광 상태가 관측되는 대각 편광의 중첩 상태이다.[1]
개념
아주 작은 미시세계의 입자는 관측되기 전에는 두 가지 상태가 중첩된 형태이다. 즉, 오른쪽으로 도는 방향과 왼쪽으로 도는 방향이 있고, 두 방향 중 한 방향을 골라 그 쪽으로 돌아야 하는데, 관측되기 전에는 50% 확률로 두 상태가 존재한다. 이를 양자 중첩이라고 부른다. 전자의 스핀의 두 상태는 관측 전에는 둘 다 확률적으로 존재하고, 둘 다 중첩된 상태이다. 연산을 통해 큐비트를 관측하고, 관측을 통해 해당 큐비트는 0이나 1이 결정된다. 기존의 비트는 00, 01, 10, 11 등의 상태의 숫자 두 개가 담긴다. 즉 두 개의 정보로 네 가지 상태를 표현할 수 있다. 그러나 큐비트는 양자 중첩에 의해서 확률로 존재하기 때문에 그 확률을 표현하는 계수를 포함해서 네 개의 계수가 담긴다. 이 네 개의 계수를 정보라고 볼 수 있다. 따라서 양자 중첩은 기존의 트랜지스터보다 두 배 더 많이 연산할 수 있게 된다. 이를 통해 기존의 컴퓨터보다 2제곱 더 많은 연산을 수행할 수 있다. 즉, 10큐비트는 10비트보다 천배 더 많은 연산을 하며, 20큐비트는 20비트보다 백만 배 더 많은 연산을 할 수 있다.[2]
큐비트
양자중첩은 큐비트를 만든다. 이 큐비트는 양자비트라고도 불린다. 일반적인 컴퓨터는 비트를 기본적인 정보 단위로 사용하는데, 0과 1 두 가지 상태 중 하나를 선택한다. 실제로는 트랜지스터에서 전기가 통하는가, 그렇지 않은가 여부에 따라 두 상태에 0과 1을 부여한다. 즉, 한 개의 트랜지스터가 곧 하나의 정보 단위이며, 이는 1비트라고 불린다. 따라서 만약 트랜지스터가 두 개라면 00, 01, 10, 11이라는 네 가지 정보 중에서 하나를 선택할 수 있다. 양자 컴퓨터는 큐비트라는 단위를 사용한다. 기본적으로 하나의 큐비트는 네가지 정보를 담을 수 있는데, 이 큐비트는 양자비트라고도 불린다. 비트가 트랜지스터의 전류 허용 여부에 의해 결정되는 것처럼, 큐비트는 전자의 스핀 방향에 의해서 결정된다. 스핀은 전자의 회전 방향을 말하는데, 여기서 전자가 실제로 회전한다는 뜻은 아니다. 이 회전 방향이 주어진 자기장의 방향과 같은지, 아니면 다른지에 따라서 0과 1로 정해진다.[2]
슈뢰딩거의 고양이 실험
양자암호화
양자암호화는 양자중첩, 양자얽힘, 불확정성 세가지 특성을 가진다. 이 특성들을 통해 양자암호화는 도청이 발생하는 순간 즉시 감지할 수 있어 안전한 암호화를 실현한다. 도청자에게 정보를 주지 않으면서 원거리에 위치한 사용자에게 비밀키를 전달해줄 수 있으며, 앞으로 기술이 발전하여 컴퓨팅 속도가 크게 상승하더라도 그 안전성을 오랫동안 유지할 수 있어 기대치가 높다. 양자 물리에 오류가 없는 한에서 이론상으로는 현재 가장 완벽한 보안 기술로, 보안 시장에서 큰 눈길을 끌고 있다. 다만 아직은 기존의 암호화 알고리즘과는 달리 비용면에서 부담이 되는 점, 다양한 디바이스에서 구현하기 어렵다는 단점이 있다. 양자암호화가 가장 먼저 실용화된 사례가 바로 양자키분배 기술이다. 양자키분배를 중심으로 유럽 표준화 기구(ETIS)는 2008년부터 양자키분배 기술 표준화를 추진하고 있고, 국제 표준화 기구(ISO/IEC)는 CC 관점에서 양자키분배 보호 자산 별 주요 위협, 양자키분배 기술에 대한 평가 기준을 제시하고 있다. 국내에서는 양자키분배 적용 암호 시스템 보안 요구 사항, 시험 요구 사항, 양자키분배 기술 안전성 확보를 위한 체계적인 접근 방법 등 제공을 목적으로 한 표준화 작업이 진행되고 있다.
특성
- 양자얽힘
- 양자 얽힘은 둘 이상의 양자가 가지는 비고전적인 상관관계를 말하며, 두 양자가 서로 멀리 떨어져 있어도 존재한다. 양자 세계의 입자 하나가 둘로 쪼개진 입자는 서로 짝을 이루는 상관관계를 가진다. 특별한 처리를 통해서 두 입자를 얽힘 상태로 만들면 아무리 멀리 떨어져 있다고 해도 서로에게 영향을 끼치는 성질이다. 아이슈타인은 이 상태를 '귀신같은 원격 현상'이라고 표현했는데, 쪼개진 두 입자가 물리적인 거리가 있는데도 불구하고 하나의 계를 이루고, 한쪽의 양자 상태를 바꾸면 다른 한쪽의 양자가 우주 반대편에 있다고 하더라도 그 상태가 동시에 변화한다.
- 불확정성
- 불확정성은 위치와 소리처럼 서로 다른 물리량을 각각 동시에, 그리고 정확하게 측정할 수 없다는 특성이다. 특히나 불확정성은 양자암호통신에서 복제가 불가능하다는 것을 증명하는 역할을 해서 더 중요하다. 이 원리에 따르면 양자의 상태를 측정하는 것만으로도 오류가 증폭되기 때문에 복제가 불가능해진다.
비교
확률 분포
- 예시 1
상자 속에 동전이 있다고 가정하자. 상자를 충분히 흔든 다음 상자를 열어서 동전 상태를 살펴본다. 이리저리 움직인 동전은 앞면이 나올 확률과 뒷면이 나올 확률 모두 50%이다. 양자 중첩과 기존의 확률 분포는 둘다 관측 결과 값이 확률적으로 정해지기 때문에 이런 면에서는 서로 비슷하다. 그러나 확률 분포에서는 실제로 동전을 던졌을 때 상자를 열기도 전에 이미 동전의 앞뒤가 정해진다. 반면에 양자 중첩에서의 동전은 상자를 열기 전에는 아직 앞면과 뒷면이 결정되지 않은 미지의 상태이고, 상자를 여는 순간 확률적으로 앞면과 뒷면 중에서 하나로 결정된다.
- 예시 2
상자 안에 100원짜리 동전 2개와 500원 짜리 동전 8개가 있다고 가정한다. 이때 상자에서 동전을 꺼내서 100원이 나올 확률은 20%이며, 500원짜리 동전이 나올 확률은 80%이다. 하지만 동전의 금액이 아니라 동전의 앞면과 뒷면을 파악해야하는 경우라면 상자 속의 100원짜리 동전과 500원 짜리 동전의 개수와는 상관 없이 언제나 50% 확률을 갖게 된다. 이와 유사하게 관측했을 경우, 수직 편광과 수평 편광이 나올 확률은 각각 20%와 80%인 광자를 45도 대각 편광으로 관측한다. 동전의 앞면과 뒷면이 나올 확률이 각각 50%인 것처럼 수직 편광이나 수평 편광으로 관측했을 때 45도 대각 편광이 나올 확률은 50%이지만, 광자를 45도 대각 편광으로 관측하면 대각 편광이 나올 확률은 50%가 아니라 58%가 된다. 100원짜리 동전과 500원 짜리 동전의 비율과는 상관없이 동전의 앞면과 뒷면이 나올 확률이 항상 50%였던 것과는 달리 양자 중첩에서는 확률이 다르게 나온다. 대각 편광의 관측 확률에 수직 편광과 수평 편광의 관측 확률 값이 반영되었기 때문이다. 이렇게 양자 상태는 측정 전에는 정확히 알 수 없고, 확률적으로 관측되는 결과의 중첩 상태로 표현한다. 따라서 양자 컴퓨터는 이러한 양자 중첩을 이용하여 해결해야할 문제의 다양한 입력을 하나의 양자 상태로 구성한 다음, 양자 병렬성과 양자 간섭 등을 이용하여 고속 연산을 처리한다.[3]
각주
- ↑ 네이버 지식백과 IT용어사전 - https://terms.naver.com/entry.nhn?docId=6023915&cid=42346&categoryId=42346
- ↑ 2.0 2.1 모두의 과학, 〈양자컴퓨터, 양자 중첩을 이해하면 보인다〉, 《브런치》, 2020-05-13
- ↑ 네이버 지식백과 IT용어사전 - https://terms.naver.com/entry.nhn?docId=6023915&cid=42346&categoryId=42346
참고자료
- 양자 중첩 위키피디아 - https://en.wikipedia.org/wiki/Quantum_superposition
- 엘지씨엔에스 보안컨설팅팀, 〈양자 컴퓨팅 시대, 양자 암호 기술과 보안〉, 《엘지씨엔에스》, 2019-06-12
같이 보기