휫필드디피(Whitfield Diffie)휘트필드 디피는 1944년 06월 05일(75세) 미국 워싱턴 D.C.에서 태어났다. 휘트필드 디피와 마틴 헬만은 1976년 논문 〈New Directions in Cryptography〉에서 암호학적 열쇠를 분배하는 혁신적인 방법(디피-헬만 키 교환)을 제안했다. 이 방식에서부터 현대적인 공개 키 암호 방식이 시작되었다.
개요
수상경력
휫필드 디피는 1994년 06월 05일 미국 워싱터 D.C.에서 태어났고 1991년부터 썬 마이크로시스템즈에서 암호학 관련 분야를 연구하고 있다.
1965년 : MIT에서 수학 석사 학위를 받았다.
1976년 : 논문 〈New Directions in Cryptography〉에서 암호학적 열쇠를 분배하는 혁신적인 방법(디피-헬만 키 교환)을 제안했다.
1996년 : 파리 카넬라키스 상 을 수상
2000년 : 마르코니 상 수상
2010년 : IEEE 리처드 W. 해밍 메달 수상
2011년 : 컴퓨터 역사박물관 펠로우
2015년 : 튜링상(Turing Award ) 수상, 이상은 ACM에서 컴퓨터 과학 분야에 업적을 남긴 사람에게 매년 시상하는 상이다. "컴퓨터 과학의 노벨상"이라고도 불린다. 영국의 수학자이며 현대 전산학의 아버지라 할 수 있는 앨런 튜링의 이름을 땄다.
특징
주요 업적으로 디피-헬먼 키 교환(Diffie–Hellman key exchange)은 암호 키를 교환하는 하나의 방법으로, 두 사람이 암호화되지 않은 통신망을 통해 공통의 비밀 키를 공유할 수 있도록 한다. 휫필드 디피와 마틴 헬먼이 1976년에 발표하였다.디피-헬먼 키 교환은 기초적인 암호학적 통신 방법을 수립하였으며, 이후 1977년 공개 키 암호 방식인 RSA 암호가 제안되었다.
방식
- 앨리스와 밥이 공개된 통신망에서 디피-헬먼 키 교환을 하기 위해서는 다음과 같은 절차를 거친다.
- 앨리스가 소수 p, 그리고 1부터 p-1까지의 정수 g를 선택하여 사전에 밥과 공유한다.
- 앨리스가 정수 a를 선택한다. 이 정수는 외부에 공개되지 않으며, 밥 또한 알 수 없다.
- 앨리스가 즉 를 p로 나눈 나머지를 계산한다.
- 밥이 마찬가지로 정수 b를 선택하여 를 계산한다.
- 앨리스와 밥이 서로에게 A와 B를 전송한다.
- 앨리스가 를, 밥이 를 계산한다.
- 마지막 단계에서 이며 따라서 앨리스와 밥은 라는 공통의 비밀 키를 공유하게 된다. 앨리스와 밥 이외의 인물은 a와 b를 알 수 없으며,를 알 수 있다.
예제
- 이 과정을 실제 숫자를 통해 예를 들면 다음과 같다. 여기서는 설명을 위해 작은 크기의 소수를 사용하지만, 실제 응용에서는 안전을 위해 10진수 수백~수천자리 크기의 큰 소수를 사용한다. 공개된 정보는 파란색으로, 비밀 정보는 붉은색 굵은 글씨로 표시하였다.
- 앨리스와 밥은 p=23, g=5를 사용하기로 합의한다.
- 앨리스가 비밀 정보를 전송하기 위해 임의의 정수 a=6을 고른 후, 밥에게 을 전송한다.
-
- A = 15,625 mod 23
- A = 8
- 밥은 임의의 정수 b=15 를 고르고, 앨리스에게 를 전송한다.
-
- B = 30,517,578,125 mod 23
- B = 19
- 앨리스는 밥에게서 받은 B 를 바탕으로 를 계산한다.
-
- s = 47,045,881 mod 23
- s = 2
- 밥은 앨리스에게서 받은 A 를 바탕으로 를 계산한다.
-
- s = 35,184,372,088,832 mod 23
- s = 2
- 앨리스와 밥은 이제 비밀 키 s = 2 를 공유하게 되었다. 여기서 p가 충분히 클 경우, 외부에서 비밀 키를 알아내기 위해 도청을 하는 도청자 이브는 g^a나 g^b를 통해 s를 알아낼 수 없는 것으로 알려져 있다. 앨리스와 밥은 두 사람 만이 아는 비밀 키 s를 갖게 되었으므로, 대칭 키 암호를 이용해 이후의 통신을 암호화할 수 있다. 그러나 p나 a, b가 너무 작을 경우, 도청자는 가능한 모든 조합을 다 계산해보는 방식으로 s를 계산해낼 수 있다. 따라서 실제 비밀 통신에는 충분히 큰 소수를 사용해야 한다. 만약 p가 최소 300자리의 소수이고, a와 b가 각각 100자리 이상의 정수일 경우, 현재 인류가 보유한 모든 컴퓨터를 동원해도 공개된 정보로부터 비밀 키를 알아낼 수 없는 것으로 알려져 있다.
장단점
취약점과 해결방안
각주
참고자료
같이 보기
이 휫필드 디피 문서는 암호 알고리즘에 관한 글로서 검토가 필요합니다. 위키 문서는 누구든지 자유롭게 편집할 수 있습니다. [편집]을 눌러 문서 내용을 검토·수정해 주세요.
|
블록체인 : 블록체인 기술, 합의 알고리즘, 암호 알고리즘 □■⊕, 알고리즘, 블록체인 플랫폼, 블록체인 솔루션, 블록체인 서비스
|
|
암호기술
|
개인키 • 경량암호 • 다자간 계산(MPC) • 다중서명(멀티시그) • 동형암호 • 디지털서명 • 링서명 • 배타적 논리합(XOR) • 복호화 • 블랙박스 암호 • 서명 • 소수 • 소인수분해 • 슈노르서명 • 스케인 • 스키테일 • 스테가노그래피 • 안전한 다자간 계산(SMPC) • 암호 • 암호경제학 • 암호문 • 암호키 • 암호학 • 암호화 • 이산로그 • 전자봉투 • 전자서명 • 전치암호 • 종단간 암호화 • 치환암호(대체암호) • 키 • 패딩 • 패스워드 • 평문 • 합성수 • 해독 • 해시 • 형태보존암호 • 혼돈 • 화이트박스 암호 • 확산
|
|
논리연산
|
논리곱(AND) • 논리연산 • 논리합(OR) • 배타적 논리합(XOR) • 부울곱 • 부울대수 • 부울합 • 부정논리곱(NAND) • 부정논리합(NOR) • 부정연산(NOT)
|
|
SHA
|
SHA • SHA0 • SHA1 • SHA2 • SHA224 • SHA256 • SHA384 • SHA512 • SHA512/224 • SHA512/256 • SHA3 • SHA3-224 • SHA3-256 • SHA3-384 • SHA3-512
|
|
MD
|
MD • MD2 • MD4 • MD5 • RIPEMD • RIPEMD-128 • RIPEMD-160 • RIPEMD-256 • RIPEMD-320
|
|
기타 해시
|
CRC-16 • CRC-32 • CRC-64 • Keccak-256 • Keccak-384 • Keccak-512 • Shake-128 • Shake-256 • 베이스32 • 베이스32 파일 • 베이스58 • 베이스64 • 베이스64 파일 • 순환중복검사
|
|
대칭키
|
AES • ARIA(아리아) • DES • HIGHT(하이트) • LEA • SEED(시드) • 대칭키 • 대칭키 암호 알고리즘 • 디피-헬만 • 디피-헬만 키교환 • 레인달 • 블로피시 • 블록암호 • 스트림 암호 • 에스박스(S-Box) • 트리플 DES
|
|
비대칭키
|
PKI • RSA • 공개키 • 공개키 암호 알고리즘 • 비대칭키 • 엘가말 • 타원곡선 • 타원곡선 디지털서명 알고리즘 • 타원곡선암호
|
|
영지식증명
|
영지식 상호 증명(ZKIP) • 영지식 스나크 • 영지식 스타크 • 영지식증명
|
|
양자암호
|
BB84 프로토콜 • E91 프로토콜 • B92 프로토콜 • 비밀키 오류율 • 안전성 증명 • 양자난수생성기 • 양자내성암호 • 양자암호 • 양자얽힘 • 양자역학 • 양자중첩 • 양자컴퓨터 • 양자키 • 양자키분배 • 양자통신 • 연속 변수 프로토콜
|
|
암호해독
|
기지평문공격(KPA) • 선택암호문공격(CCA) • 선택평문공격(CPA) • 암호공격 • 암호문 단독공격(COA) • 암호해독
|
|
암호학 인물
|
라이언 플레이페어 • 레너드 애들먼 • 로널드 리베스트 • 마틴 헬만 • 블레즈 드 비즈네르 • 아디 샤미르 • 앨런 튜링 • 웨슬리 피터슨 • 찰스 휘트스톤 • 휫필드 디피
|
|
위키 : 자동차, 교통, 지역, 지도, 산업, 기업, 단체, 업무, 생활, 쇼핑, 블록체인, 암호화폐, 인공지능, 개발, 인물, 행사, 일반
|
|