검수요청.png검수요청.png

피보나치 수열

위키원
183.97.234.161 (토론)님의 2023년 6월 7일 (수) 01:48 판
이동: 둘러보기, 검색

피보나치 수열(Fibonacci Sequence)은 첫 번째 항과 두 번째 항이 1이며 그 뒤의 항은 바로 앞 두 항의 합인 수열이다. 이탈리아의 수학자인 레오나르도 피보나치(Leonardo Fibonacci)의 이름을 딴 수열이다. 피보나치 수열은 {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, ...} 와 같이 뒤로 갈수록 급격히 증가한다.

개요

피보나치 수열은 첫 번째 항과 두 번째 항이 1이며 그 뒤의 항은 바로 앞 두 항의 합인 수열이다. 이 수열의 항을 피보나치 수(Fibonacci Number)라고 부른다. 편의상 0을 0번째 항으로 놓기도 한다.

  • 1항부터 시작할 경우 다음과 같이 정의된다.


1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, ... 
  • 0항부터 시작할 경우 다음과 같이 정의된다.



0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, ... 

역사

최초의 피보나치 수열은 기원전 450년 인도의 수학자 핑갈라가 쓴 책에서 이와 같은 수열이 최초 언급되었다. 이후 이탈리아의 수학자인 레오나르도 피보나치(Leonardo Fibonacci)가 1202년 저서인 '산반서'라는 책에서 '토끼의 번식 증가량'을 언급하며 연구하였다.[1]

  • 첫 달에 새로 태어난 토끼는 한 쌍만이 존재한다.
  • 두 달 이상 된 토끼는 번식이 가능하다.
  • 번식이 가능한 토끼 한 쌍은 매달 새끼 한 쌍을 낳는다.
  • 이 때 토끼는 죽지 않는다.

첫 달에는 새로 태어난 토끼 한 쌍이 있고, 첫 달에는 번식할 수 없어 두 번째 달에는 그대로 토끼 한 쌍, 세 번째 달부터는 이 토끼 한 쌍이 새끼를 낳게 되어 토끼가 2쌍이 되고, 네 번째 달에는 3쌍, 다섯 번째 달에는 5쌍이 된다. 이때 n번째 달에 a쌍의 토끼가 있었고, 다음 n+1번째 달에는 새로 태어난 토끼를 포함해 b쌍이 있었다고 하면 그다음 n+2번째 달에는 a+b 쌍의 토끼가 있게 된다. 이는 n번째 달에 살아있던 토끼는 충분한 나이가 되어 새끼를 낳을 수 있지만, 바로 전 달인 n+1번째 달에 막 태어난 토끼는 아직 새끼를 낳을 수 없기 때문이다.[2]

실제 피보나치 수열은 예전부터 알려져 있었으나 피보나치 수의 생성 함수는 완전히 정리되기까지 오랜 시간이 걸렸다. 1765년 레온하르트 오일러가 최초로 이 생성함수를 정리하여 발표했었고 이후 1848년 자크 비네가 이 생성함수를 재발견하여 발표했고 결국 피보나치 수의 생성함수는 비네의 식이라고 불렸다.[3]

항등식

  • 피보나치 수의 일반항은 다음과 같다.

여기서 는 황금비이며, 는 5의 제곱근이다. 이를 비네 공식(Binet's formula)이라고 한다.

  • 카시니 항등식(Cassini's identity)
  • 도가뉴 항등식(d'Ocagne's identity)
  • 다음과 같은 항등식이 성립한다.
  • '음의 정수', 이 경우, 비네 공식이 여전히 성립한다.
[2]
0, 1, -1, 2, -3, 5, -8, 13, -21, 34, -55, 89, -144, 233, -377, 610, -987, ...

급수 공식

  • 피보나치 수의 합
  • 피보나치 수의 교대 합
  • 피보나치 수의 제곱 합
  • 피보나치 수의 세제곱 합
  • 피보나치 수의 홀수 째 항의 합
  • 피보나치 수의 짝수 째 항의 합
  • 피보나치 수의 3의 배수 째 항의 합
  • 피보나치 수의 역수의 합은 수렴한다.
[2]

생성 함수

  • 피보나치 수의 생성 함수
  • 피보나치 수의 역수의 생성 함수
[2]

점근 공식

  • 이웃하는 피보나치 수의 비는 황금비로 수렴
  • 다음과 같은 부등식이 성립
[2]

수론적 성질

피보나치 수열은 서로 인접한 항끼리 정수의 서로소(1 이외에 공약수를 갖지 않는 둘 이상의 양의 정수)이다. 이는 귀류법으로 증명할 수 있다.[2]

예시

피보나치 수열은 기본적으로 수학뿐만 아니라 자연에서 생물학적 패턴, 컴퓨터 응용 프로그램, 경제학 등 다양한 분야에서 사용되고 있다.[1]

  • 자연 : 생물학적 패턴에 자주 등장한다. 솔방울의 모양, 꽃씨의 배열, 꽃잎의 수, 나선형 엽상식물, 꿀벌의 가계도 등.
  • 음악 : 조셉 쉴린저(1895-1943)는 멜로디를 피보나치 수열에 맞춰 간격을 두는 작곡 체계를 개발했다.
  • 경제 : 엘리어트 파동과 같은 주식, 암호화폐 시장 차트에서 기술적 분석에 사용된다.
  • 컴퓨터 : 난수 생성기, 스크럼 방법론을 사용하는 소프트웨어 개발, 네트워크 토폴로지를 위한 병렬 알고리즘 등.

각주

  1. 1.0 1.1 "Fibonacci number", Wikipedia
  2. 2.0 2.1 2.2 2.3 2.4 2.5 피보나치 수〉, 《위키백과》
  3. 피보나치 수열〉, 《나무위키》

참고자료

같이 보기


  검수요청.png검수요청.png 이 피보나치 수열 문서는 암호화폐 거래에 관한 글로서 검토가 필요합니다. 위키 문서는 누구든지 자유롭게 편집할 수 있습니다. [편집]을 눌러 문서 내용을 검토·수정해 주세요.