지식표현(Knowledge Representation)이란 지식(knowledge)을 컴퓨터와 사람이 동시에 이해할 수 있는 형태로 나타내는 것을 의미한다.
개념
지식표현은 복잡한 문제를 해결하는 데 사용할 수 있는 세계에 대한 정보를 컴퓨터 시스템이 사용할 수 있도록 하는 표현 중점에서 중요한 연구로, 인공지능 분야 연구이다. 합목적적, 목적달성에 부합되는 구조를 가져야하며, 추론의 효율성, 지식 획득의 용이성, 저장의 간결성 및 표현의 정확성, 다양성 등을 갖추어야 한다. 자연어를 컴퓨터가 이해할 수 있도록 프로그램화 되어야 하기 때문에, 획득한 지식을 효율적이고 효과적으로 표현하는 지식표현은 전문가 시스템의 성패를 좌우한다고 할 수 있다. 이에는 철학, 논리학, 수학, 컴퓨터 과학, 언어학 등 다양한 측면으로 연구되는 학제간 연구분야이다.[1] 지식 표현방법은 인간의 일상 언어와 컴퓨터 언어의 표현 구조 사이 중간에서 타협점을 결정하게 된다. 인간의 언어인 자연 언어로만 표현하면 컴퓨터에 의한 자연어의 처리가 완벽하지 못하므로 구현이 불가능하다. 컴퓨터 입장에서 지식을 컴퓨터 언어의 알고리즘과 자료구조로만 표현하면 인간 또한 이해하기 어렵다. 이렇게 중간 정충안이 규칙, 프레임, 의미망, 그래프 전치논리 형태 등인 것이다. 이러한 표현을 위한 전문적인 컴퓨터 언어인 LISP, PROLOG 등이 개발되어 있는데, 지식을 책을 집필하듯이 서술적으로 나타내기 보다 구조화와 체계화를 이루어 컴퓨터에 의해 쉽게 구현 될 수 있고, 추론 및 검색이 용이해지는 것이다. 지식표현은 대용물(surrogate), 일련의 존재론적 약속(ontological commitments), 지능적 추론의 단편적인 이론(fragmentary theory), 효율적인 전산화(computation)을 위한 수단, 인간 표현의 수단이라는 다섯 가지의 역할도 있다.[2]
종류
지식표현 방법
- 논리(Logic)
- 의미망 (Semantic Network)
- 프레임 (Frame) : 객체지향 (object oriented)
- 생성규칙(Production Rule)
- 합성(Hybrid) : 규칙(rule) + 객체지향
특징
각주
참고자료
같이 보기
이 지식표현 문서는 인공지능 기술에 관한 토막글입니다. 위키 문서는 누구든지 자유롭게 편집할 수 있습니다. [편집]을 눌러 이 문서의 내용을 채워주세요.
|
인공지능 : 인공지능 서비스, 인공지능 로봇, 인공지능 기술 □■⊕, 인공지능 기업, 인공지능 인물
|
|
인공지능 기술
|
AI 워싱 • 랭체인 • 로봇공학 • 로봇기술 • 인지과학 • 자동추론 • 자연어 처리 • 지능 • 지식표현 • 컴퓨터 비전 • 튜링 테스트 • 프롬프트 • 프롬프트 엔지니어링
|
|
문자인식과 음성인식
|
ICR • OCR • OMR • TTS • URL • 글자 • 답변 • 대화 • 동영상 • 디자인 • 맥락 • 문서 • 문자 • 문자인식 • 문자채팅 • 발음 • 번역 • 분류 • 상담 • 소스코드 • 스토리 • 얼굴 • 얼굴인식 • 음성 • 음성채팅 • 음성인식(STT) • 이미지 • 인공어 • 자막 • 자연어 • 질문 • 채팅 • 코드 • 코딩 • 텍스트 • 통번역 • 통역 • 파일 • 폴더 • 화상채팅 • 화자인식
|
|
인공지능 데이터
|
데이터라벨러 • 데이터라벨링 • 데이터셋 • 벡터 • 벡터DB • 벡터공간 • 스칼라 • 임베딩 • 크라우드워커 • 토큰 • 토큰화
|
|
인공지능 학습
|
ADP • CoLLM • DALL-E • DDPG • DQN • LAM • LMM • SARSA • sLLM • SLM • 강화학습 • 거대언어모델(LLM) • 결정이론적 메타추론 • 계통적 강화학습 • 과적합 • 동적 계획법 • 딥러닝 • 딥큐러닝 • 머신러닝(기계학습) • 메타추론 • 모델 기반 강화학습 • 모델 프리 강화학습 • 미세조정(파인튜닝) • 반영식 아키텍처 • 비지도학습 • 사전학습 • 수시 알고리즘 • 어니 • 에이전트 • 인공지능 학습 • 전이학습 • 준지도학습 • 지도학습 • 추론 • 학습 • 확률적 경사하강법
|
|
인공지능 알고리즘
|
AGI • ANI • ASI • RAG • XAI • 가중치 • 관계형 네트워크(RN) • 뉴런 • 다층퍼셉트론 • 단층퍼셉트론 • 데이터마이닝 • 방사신경망 • 볼츠만 머신 • 분산 샌드박스 • 생성대립신경망(GAN) • 생성형 AI • 수퍼얼라인먼트 • 순전파 • 순환신경망(RNN) • 시그모이드 함수 • 신경망 • 신경망 구조 • 심층신경망(DNN) • 심층신뢰신경망(DBN) • 양방향 비고정값 암호 체계(TSID) • 역전파 • 은닉층 • 인공신경망(ANN) • 인공지능(AI) • 제한 볼츠만 머신(RBM) • 전방전달신경망 • 주의 메커니즘 • 코헨 자기조직 신경망 • 텍스트마이닝 • 트랜스포머 • 파이 • 퍼셉트론 • 합성곱 신경망(CNN)
|
|
계산복잡도
|
NP • NP-완전 • 계산복잡도 • 공간복잡도 • 시간복잡도 • 여 NP • 여 NP-완전
|
|
인공지능 프로그램
|
BCI • GPT • 딥블루 • 딥페이크 • 멀티모달 AI • 모달 • 모달리티 • 모달창 • 알렉스넷 • 어니 • 알파고 • 알파고제로 • 알파폴드 • 왓슨 • 카페 • 컨트롤넷 • 텐서플로 • 텔레파시 • 토치 • 파이토치 • 한돌
|
|
인공지능 특징
|
결정이론 • 계산상의 합리성 • 논리학 • 논리주의자 • 분산성 • 불확실성 • 삼단논법 • 선호도 • 예측곤란성 • 완벽한 합리성 • 유계 합리성 • 이유 불충분의 원리 • 자율성 • 최대기대효용 • 할루시네이션 • 효용이론
|
|
인공지능 법적 지위
|
권리주체성 • 소버린 AI • 전자대리인 • 전자적 인간 • 책임법
|
|
위키 : 자동차, 교통, 지역, 지도, 산업, 기업, 단체, 업무, 생활, 쇼핑, 블록체인, 암호화폐, 인공지능, 개발, 인물, 행사, 일반
|
|