검수요청.png검수요청.png

선호도

위키원
Asadal (토론 | 기여)님의 2020년 7월 22일 (수) 21:50 판 (같이보기)
이동: 둘러보기, 검색

선호도(選好度)는 여러 가지 중에서 가리어 특별히 더 좋아하거나 덜 좋아하거나 하는 정도를 나타낸다. 그리고 선호도는 좋아하는 정도를 나타내어 경제학, 심리학 등의 다양한 분야에서 사용되고 경제학에서는 선택을 설명하는 개념으로 정의한다.

개요

선호도는 좋아하는 정도를 나타내어 다양한 분야에서 사용되어 진다. 예를 들어, 경영 분야의 테스트 마케팅에서는 신제품 따위를 판매할 때, 미리 특정 지역을 골라 소비자의 선호도 따위를 조사ㆍ분석하여 전체의 경향을 예측할 때 사용되고 심리 분야에서는 자극을 두 개씩 제시하여 그 가운데서 더 좋은 자극을 선택하게 하는 방법으로 자극의 선호도 순위를 알아보기 위한 심리 측정 방법인 대비법이 있다. 또한, 쌍대 비교법으로 자극을 둘씩 제시하여 그 가운데서 더 좋은 자극을 선택하게 하는 방법. 자극의 선호도 순위를 알아보기 위한 심리 측정 방법이 있다. 일상에서도 소비자가 브랜드 상표에 대한 선호도가 있는 상표 충성도 또한 선호도를 통해 이루어진다. 유의어로는 인기라는 명사가 있다.[1]

특징

선호도와 합리성

합리적 선택 이론은 어떤 것을 선호하는지 말할 수 있는 두 개 이상의 선택 가능한 대안 중에서 선호를 하고 있다고 가정한다. 그렇게 되면 만약 대안 A를 대안 B보다 선호하고 대안 B를 C 보다 선호한다면 A를 C 보다 선호하는 것이라고 가정된다. 합리적 주체는 자신의 선호를 결정할 때 이용 가능한 정보, 사건의 가능성, 잠재적 비용과 이익을 고려하며, 스스로 결정한 행위의 가장 좋은 대안을 정할 때 일관적으로 행동한다고 가정된다.[2] 일반적으로 합리적 선택이라는 것은 어떤 선택이 존재하는지에 대한 결정 방식과, 그다음 어떤 일관적인 기준에 따라 가장 선호되는 선택을 하는 것이다. 경제학적인 합리성은 모든 선택에 선호도를 매길 수 있다. 만약 선택 옵션이 여러 개가 있다면 당신은 선택 사이에 무차별적이거나 동일한 선호도가 아니면 하나를 선택할 수 있지만, 해당 옵션에 대해 아무런 선호도를 매길 수 없는 게 아니라는 것이다.[3]

경제학에서 선호도는 선택을 설명하는 개념이다. 경제학자들은 행복을 어떤 대상을 다른 것에 비해 더 좋아하는 개인 선호도가 얼마나 충족되었는지를 바탕으로 판단한다. 개인의 욕망을 객관적으로 평가하기는 어려우므로 현시선호(revealed preference)라는 관점에서 생각한다. 선호도는 여러 가지 중 하나에 대해서 자신이 원하는 정도를 뜻한다. 개인의 선호도를 얼마나 충족하였는지에 따라 행복을 측정한다. 이렇게 선호도를 높은 물건을 구매하면 행복, 효용성을 충족시킨다. 이를 극대화하기 위해서 가장 선호도가 높은 물건을 구매해야 한다.[4]

경제학에서 합리성은 두 가지로 정의가 된다. 첫째는 완전성(completeness) 조건인데 선택의 상황에서 좋아하는 것과 싫어하는 것을 분명하게 분별할 수 있어야 한다는 것이다. 좀 더 구체적으로 말하면, 선택해야 할 것 중에서 두 개씩 뽑아 맞비교할 때 그 둘을 똑같이 좋아하는지 아니면 그중 어느 것을 더 좋아하는지를 분명하게 말할 수 있어야 한다는 것이다. 둘째는 이행성(transitivity)의 조건인데 쉽게 말해서 선호에 일관성이 있어야 한다는 것이다. 예를 들어서 김치찌개보다 햄버거를 더 좋아한다는 사람이 자장면보다는 김치찌개를 더 좋아한다고 하면, 그는 당연히 자장면보다는 햄버거를 더 좋아해야 한다. 만일 햄버거보다는 자장면을 더 좋아한다면, 우리는 이 사람이 과연 어떤 것을 가장 좋아하고 어떤 것을 가장 싫어하는지 알 수가 없다. 이행성 조건을 좀 더 정확하게 말하면, 어떤 사람이 x를 y보다 더 좋아하고 y를 z보다 더 좋아한다면, 그는 당연히 x를 z보다 싫어하지 않아야 한다는 것이다. 만일 x보다 z를 더 좋아한다면 이 사람의 선호에 일관성이 없는 셈이다. 이런 선호를 흔히 순환성을 가진다.[5]

활용

음악 플랫폼

에스케이텔레콤㈜의 음원 플랫폼인 플로는 이용자 취향을 반영한 상위 100곡 순위 차트를 선보인다. 플로는 인공지능 딥러닝 기술로 기존 플로차트에 이용자의 청취 이력과 선호도, 음원 정밀 분석 등의 빅데이터를 접목해 개인 맞춤형 차트를 만든다. 플로 관계자는 "차트 내 100곡이 이용자의 취향 순으로 새롭게 정렬된다"며 "50위 밖의 곡이 10위권 안에 올라갈 수도 있다"고 설명했다. 후발주자로 국내 음원시장에 진출한 플로는 인공지능기술에 공을 들이고 있다. 2018년 말 서비스 시작부터 홈 화면에서 실시간 차트를 없애고 스포티파이처럼 인공지능 음원 추천을 내세워 이용자 취향에 기반한 플레이리스트로 승부를 걸었다. 국내 음원시장 1위 멜론㈜카카오의 인공지능 추천 엔진을 활용해 음악을 골라준다. 멜론은 플로처럼 플레이리스트를 강화할 계획이다. 카카오는 2018년부터 인공지능 경진대회를 개최하는데 올해 주제로 `멜론의 플레이리스트 예측과 추천`을 정했다. 지니뮤직은 자체 개발한 인공지능 알고리즘을 활용해 평소에 즐겨 듣는 음악과 유사한 노래를 골라주거나 나와 비슷한 취향을 가진 다른 사람이 듣는 음악을 추천해주고 있다. 구글유튜브 뮤직도 최신곡을 관련 동영상을 보면서 들을 수 있는 데다 인공지능 알고리즘을 통한 콘텐츠 추천 기능이 뛰어나 이용자가 늘고 있다.[6]

소비자 선호도 분석 시스템

식품회사에서 제품의 맛이나 특성을 평가하기 위해서 가장 많이 사용하는 방법으로 소비자들을 초대하거나 방문하여 직접적인 시식을 통해서 이루어지는 대면조사가 있다. 이러한 방법은 평가를 위한 표본 집단의 적절한 구성 문제 그리고 사이즈 증가에 따른 비용 문제를 동반한다. 또한, 소비자의 취향을 평가하기 위한 적합한 질문을 만드는 과정들과 그 평가를 위한 툴을 만드는 어려움도 동반한다. 그리고 수작업과 설문조사에 의존하고 있으므로 모집단의 숫자에 따라 설문 결과의 신뢰도 문제가 생길 수 있고, 원하는 데이터를 얻기 위해 각각의 설문 조사별로 감각 분석을 위한 툴이나 어휘집이 필요한 경우가 많다. 또한, 소비자들의 선호도는 시대 유행에 따라 계속 바뀌기 때문에 설문 방식과 내용도 계속해서 업데이트가 필요하다. 이는 제품 사이클이 길지 않고 매년 많은 신제품이 나오는 소비재 산업에서 추가 비용 부담과 신뢰성의 문제를 일으킨다. 따라서 일반적인 대면 조사 및 온라인상의 수작업적인 리뷰 분석 방법은 질문의 신뢰성과 편차 감소를 위해 표본을 늘릴 경우, 투입되는 비용 및 시간의 효율적인 관리가 힘들어지는 경향이 있다.[7]

그래서 여러 소셜 네트워크 서비스(SNS) 사이트에서 작성된 임의의 불특정한 식품에 대한 맛, 평가, 분석 등을 리뷰한 글들을 자연어 처리를 통해 분석 가능한 빅데이터로 맛에 관한 문장을 크롤러를 구현한 후 크롤링하여서 데이터를 추출한다. 이는 각각 성별, 나이, 지역 등 소셜 네트워크 서비스상의 작성자들에 대한 서브 항목 카테고리를 만들어 추후 각각의 모집군별의 자세한 분석도 가능하게 프로그래밍이 되었다. 그렇게 소셜 네트워크 서비스 리뷰에서 크롤링을 거쳐 수집된 문장들은 제품의 특징을 비교할 항목별 단어의 말뭉치로 전환되고 워드 임베딩 작업을 위해 연속적인 스킵그램 모델로 훈련된다. 즉 딥러닝 방식을 이용하여, 기존의 대면 방식으로 이루어지는 식품 관능검사를 비대면적이고 저비용으로 할 수 있는 대체 방법안을 제시할 수 있다. 온라인상이나 소셜 네트워크 서비스에서 소비자들이 자유롭게 올리는 리뷰들로부터 식품의 평가를 분석하는 자동화된 텍스트 분석 방법을 만들어 분석 가능한 단어들을 추출하고 이를 정량화된 벡터값을 가진 단어들로 최종 변환한다. 변환된 단어를 기준으로 식품들의 맛과 향 또는 다른 비교 대상 항목을 정하여 맛을 평가하기 위해 추론을 추출한다. 추출한 결과를 대면 조사로 이루어진 소비자 선호도 평가 결과와 비교해 본 결과, 제안한 식품 평가 방법의 신뢰성과 장점을 확인할 수 있다. 큰 비용과 시간이 소모되는 식품 특성 분석 및 관능 평가를 대면 조사나 수작업을 통하지 않고 온라인상의 빅데이터에서 딥러닝 기법을 이용한 자동화 관능검사로 대체할 수 있음을 보여준다.[7]

결론적으로 자동 텍스트 분석 방법은 간단한 맛 정보뿐만 아니라 음식에 관한 다양한 세부 정보를 제공하여 제품 자체의 특징을 자세히 분석하므로 실제 대면 조사와 비교해 우위에 있다. 또한, 온라인상의 빅데이터 수집 시에 대상 제품군 전체의 데이터를 수집할 수 있기 때문에 개별 제품 및 제품군 전체에 대한 특징을 동시에 분석할 수 있어 제품군 선호도 분석이 필요한 신제품 개발의 척도로도 이용할 수 있다. 마지막으로 실시간으로 온라인상의 빅데이터를 수집하는 방법이어서 시대 유행에 민감한 소비자들의 변화를 계속해서 관찰하며 분석할 수 있다는 점도 기존 대면조사 방식과 차별화된다.[7]

사례

선거용 봇 '로엘'

로엘은 챗봇을 이용해 선거관리위원회에 등록된 지방선거 후보의 기본정보를 사용자에게 제공해준다. 득표율 예측 등 깊이 있는 데이터를 제공한 대선봇 로즈와는 다르게 수많은 후보의 지역구별 정보를 더욱 쉽게 확인할 수 있도록 만들어진 로엘은 선거 일정, 투표소 안내, 후보 선호도 예측, 주요 뉴스 등 다양한 지방선거 관련 정보 및 일상어 채팅도 함께 제공한다. 챗봇 플랫폼의 특장점을 활용하여 선거관리위원회에 등록된 지방선거 후보의 기본정보를 사용자의 최소 키워드인 후보자별, 지역별, 후보군별 등을 검색으로 즉각 제공해준다. 선호도 예측 서비스는 소셜 네트워크 서비스 게시물과 기사 댓글과 같은 비정형데이터를 자이냅스의 자연어 처리 기술과 선호도 예측 서비스는 자이냅스의 딥자이(Deep Xai)의 머신러닝 기술로 분석해 유권자들의 후보별 선호도를 예측하는 서비스다. 분석한 결과는 시각화 대시보드를 통해 그래프 형태로 제공되고 특정 기간 소셜 네트워크 서비스의 데이터를 분석한 결과로 매일매일 변경된다.[8]

추천 엔진

넷플릭스는 알고리즘을 통해 넷플릭스의 구독자들이 어떤 선호도를 갖는지 예측한다. 계속해서 수정·보완을 거치면서 해당 알고리즘은 추천 엔진에 적용돼 중요한 역할을 수행한다. 추천엔진은 데이터와 알고리즘을 이용해 사용자에게 관련 영상을 추천해주는 데이터 필터링 도구다. 애널리틱스 인디아 매거진은 인도 시청자 취향이 다양하므로 넷플릭스가 추천 엔진에 사활을 걸었다는 점을 강조했다. 개인 취향 맞춤 서비스 기능은 사용자가 다른 영상을 찾아보게 했고, 회사의 콘텐츠 증가에도 일조했다는 것이다. 빅 데이터 방법론이 이용자가 원하는 영상을 찾기 쉽게 만들었다.[9] 독일의 과학 저널리스트 크리스토프 드뢰서는 책<알고리즘이 당신에게 이것을 추천합니다>을 통해 넷플릭스의 추천 서비스가 알고리즘 덕분이라고 말하며, 오늘날 대부분의 추천 시스템이 협업 필터링(collaborative filtering) 알고리즘과 내용 기반 필터링(content-based filtering) 알고리즘을 조합한 형태라고 말한다. 내용 기반 필터링을 하기 위해서는 항목을 분석한 프로파일과 사용자의 선호도를 추출한 프로파일을 추출해 유사성을 계산해야 한다. 사용자의 특성을 비교해 사용자가 선호할 만한 콘텐츠를 제공하는 것이다. '사용자가 어떤 영화를 찾는가?', '그가 보기 시작했다가 금세 그만둔 영화는 무엇인가?', '그는 시리즈물을 한꺼번에 보는가?' 하는 개인적 취향에 관한 정보와 영화의 배경, 인물, 장르 등을 분석한 정보와 비교하는 방식이다. 현재 넷플릭스에서 사용하는 알고리즘은 협업 필터링을 기반으로 이를 고도화한 모델 기반 협업 필터링(Model-based Collaborative Filtering algorithm)이다.[10]

각주

  1. 선호도 네이버 사전 - https://ko.dict.naver.com/#/entry/koko/793898cda7174b37877782ba3ca5ff75
  2. 합리적 선택 이론 위키백과 - https://ko.wikipedia.org/wiki/%ED%95%A9%EB%A6%AC%EC%A0%81_%EC%84%A0%ED%83%9D_%EC%9D%B4%EB%A1%A0
  3. Oso, 〈경제학에서의 합리성에 대해〉, 《이글루스》, 2015-10-19
  4. 궁금소년, 〈경제용어#03 선호도〉, 《네이버 블로그》, 2018-02-03
  5. 이정전, 〈경제적 합리성 비판〉, 《에스스페이스》
  6. 임영신 기사, 〈"이 노래 추천해요"…음악플랫폼, AI 기술전쟁〉, 《매일경제》, 2020-05-05
  7. 7.0 7.1 7.2 문현준 민경복, 〈딥러닝 기법을 이용한 인공지능 기반의 소비자 선호도 분석 시스템〉, 《한민족과학기술자네트워크》
  8. 배태웅 기자, 〈AI 스타트업 자이냅스, 6.13 지방선거용 챗봇 ‘로엘’ 출시〉, 《한국경제》, 2018-05-30
  9. 소윤서, 〈美 넷플릭스 성공요인, 시청자 선호도 간파하는 '빅데이터'로 밝혀져〉, 《에이아이타임즈》, 2019-04-08
  10. 함예슬, 〈넷플릭스, 내 취향 다 아는 이유' 〉, 《이웃집과학자》, 2018-11-12

참고자료

같이보기


  검수요청.png검수요청.png 이 선호도 문서는 인공지능 기술에 관한 글로서 검토가 필요합니다. 위키 문서는 누구든지 자유롭게 편집할 수 있습니다. [편집]을 눌러 문서 내용을 검토·수정해 주세요.