검수요청.png검수요청.png

"3D 프린팅"의 두 판 사이의 차이

위키원
이동: 둘러보기, 검색
(전망)
(전망)
81번째 줄: 81번째 줄:
 
== 전망 ==
 
== 전망 ==
  
세계 4대 회계법인 중 하나인 딜로이트는 매년 다양한 산업 예측 보고서를 작성하는데 각종 첨단 산업의 2109년 전망이 담긴 예측 보고서를 제시했다. 'TMT(Technology, Media and Telecommunications)-Predictions-2019'라는 제목의 보고서이다. 이 보고서의 내용 중 3D 프린터에 대한 전망도 나와있는데, 2014년 3D 프린터 시장의 붐이 일어났던 때와 비슷하게 2019년 '''3D 프린터 시장이 재도약할 것이라는 예측과 함께 미래전망이 밝다'''고 했다.<ref>쓰리디톡, 〈[https://blog.naver.com/3dimensions_kr/221450131296 딜로이트, 3D 프린터 다시 한 번 급성장 예상?]〉,《네이버 블로그》, 2019-01-28</ref>
+
세계 4대 회계법인 중 하나인 딜로이트는 매년 다양한 산업 예측 보고서를 작성하는데 각종 첨단 산업의 2109년 전망이 담긴 예측 보고서를 제시했다. 'TMT(Technology, Media and Telecommunications)-Predictions-2019'라는 제목의 보고서이다. 이 보고서의 내용 중 3D 프린터에 대한 전망도 나와있는데, 2014년 3D 프린터 시장의 붐이 일어났던 때와 비슷하게 2019년 '''3D 프린터 시장이 재도약할 것이라는 예측과 함께 미래전망이 밝다'''고 했다.<ref>쓰리디톡, 〈[https://blog.naver.com/3dimensions_kr/221450131296 딜로이트, 3D 프린터 다시 한 번 급성장 예상?]〉,《네이버 블로그》, 2019-01-28</ref>그 이유는 다음과 같다.
그 이유는 다음과 같다.
 
  
 
* 2014년과 달리 2019년 3D 프린터 재료의 수가 두 배 이상 늘어 났으며, 또한 여러 재료를 '''복합적으로 출력가능한 3D 프린터가 등장'''하였다.
 
* 2014년과 달리 2019년 3D 프린터 재료의 수가 두 배 이상 늘어 났으며, 또한 여러 재료를 '''복합적으로 출력가능한 3D 프린터가 등장'''하였다.

2019년 9월 3일 (화) 10:07 판

3D 프린팅(3D printing) 또는 3차원 프린팅은 3차원 공간에 재료 물질을 조금씩 쌓아올려서 원하는 사물을 만드는 기술이다. 컴퓨터로 만든 도면을 이용하기 때문에 복잡한 구조물도 쉽게 제작할 수 있다. 물건을 직접 배송하지 않고 인터넷을 통해 도면만 보내주면, 집이나 사무실에서 3D 프린터를 이용해 물건을 출력할 수 있다. 3D 프린터를 이용하면 저렴하면서도 빠른 속도로 개인에게 딱 맞는 제품을 출력할 수 있다. 과거 공장제 대량생산 시스템과 달리, 3차원 프린터를 이용함으로써 개인 맞춤형 제조업의 시대를 열 수 있다.

개요

3D 프린팅(3D Printing)은 일반적인 프린터가 평면으로 된 문자나 그림을 인쇄하는 것과는 다르게 입체도형을 찍어내는 것을 말한다. 즉, 3D 프린터는 3차원 도면 데이터를 이용하여 입체적인 물품을 생성하게 된다. 종이를 인쇄하듯 3차원 공간 안에 실제 사물을 인쇄하는 3D 기술은 의료, 건축, 우주, 식품, 생활 용품 등 많은 분야에서 활용할 수 있으며 축구화에 쓰일 천을 인쇄하거나 항공기, 자전거 뼈대, 인공 관절를 만드는 등, 제품을 제작하는 대부분의 분야에서 3D 프린팅의 예시를 들 수 있을 만큼 그 쓰임새는 무궁무진하다.

역사

  • 1980년: 시초는 RP(Rapid Prototyping)이라고 불리는 기술로, 일본의 고다마 히데오 박사에 의해 특허 출원되었지만, 기한인 1년 안에 설명서를 기재하지 못했기에 특허는 무산되었다.
  • 1983년: 3D 시스템의 공동창업자 찰스 힐(Chales Whull)에 의해 처음 시작되었다.
  • 1986년: 3D 프린터의 첫 번째 특허는 SLA(광경화성 수지 적층 조형) 기계를 만든 척 헐(Chuck Hull)에게 주어진다. 그 후 3D System사를 설립하고 2년 후인 1988년 3D 프린터가 세계 최초로 상용화되었다.
  • 1987년: 미국 오스틴의 텍사스 대학에서 학부생이었던 Carl Deckard가 Joe Beaman교수의 도움을 받아 SLS(Selective Laser Sintering 선택적 레이저 소결 조형) 방식의 3D 프린터의 특허를 1989년에 취득했다. 작동 원리는 플라스틱 가루 위에 원하는 모양으로 접착제를 뿌린 뒤 남은 가루를 날리는 방식이었으며 현재의 SLS 방식의 시초가 된다고 할 수 있다. 이 특허는 이후 DTM 사가 상용화 하였으며 현재 해당 기업은 3D System 사에 인수 합병되었다.
  • 1989년: FDM(Fused Deposition Modeling) 방식의 특허가 출원되었는데, 해당 방식은 스콧 크럼프(Scott Crump)가 취득하였으며 이후 스트라타시스(Stratasys)사를 설립해 1991년에 최초로 상용화가 되었다. 이 기업은 현재 세계 1위의 3D 프린터 제조업체이다. 참고로 상표권 분쟁을 피하기 위해 FDM을 FFF(Fused Filament Fabrication)로 부른다.

3D 프린터가 그 이름을 얻어 대중에 알려진지는 얼마 되지 않았지만 실제 현장에 도입된 지는 꽤 긴 시간이 흘렀다. 원래는 Rapid Prototyper라는 이름으로 기업에서 목업을 제작하는데 주로 사용되었다. 아직 이때까지만 해도 하나의 물품을 제작하는데 12-24시간 정도로 긴 시간을 요구했고 비용이 상당히 비쌌기 때문에 일반인이 사용하기엔 적합하지 않았다. 3D 프린터가 대중에게 알려지고 익숙해지기 시작한 시기는 비교적 생산비용이 저렴하고 제작 시간이 짧은 FDM방식이 상용화한 시기부터이며, 이때를 기점으로 3D 프린터라는 용어가 쓰이기 시작했다.

제작 과정

모델링(Modeling)

일반적으로 CAD or 3차원 모델링 소프트웨어를 이용하여 3차원 데이터를 완성하며, 3D 스캐너를 이용해 3차원 데이터를 얻을 수도 있다. CAD와 기기 간의 표준 데이터 인터페이스는 일반적으로 STL 파일 형식인데, 3D 스캐너로 생성된 파일은 보통 PLY 파일 형식을 사용한다.

프린팅(Printing)

기계가 모델링 과정에서 만들어진 도면을 이용해 물체를 만들어내는 과정으로 STL파일을 읽어들여 CAD모델에서의 가상적인 단면을 만들어내 액체나 분말등의 재료의 연속적인 층을 생성한다. 인쇄 과정은 사용 방법과 모델의 크기와 복잡성에 따라 몇 시간에서 며칠 정도의 시간이 소요될 수 있다.

후처리(Post-Processing)

인쇄된 결과물에 대해서는 필요할 경우 마무리 공정이 추가되기도 하는데 사포로 연마하거나, 색칠하거나, 인쇄된 파트들을 조립하는 공정이 추가될 수 있다.

작동방식

절삭형

커다란 원재료 덩어리를 칼날을 이용해서 조각하는 방식이다. 완성품의 품질은 높은 편이지만, 채색 작업은 별도로 진행해야 하고, 덩어리에서 깎아내는 작동 원리상 재료를 많이 소비하며, 컵이나 파이프처럼 굴곡이 많은 물체는 제작하기 어렵다는 단점이 있다. 사실 이것은 보통 4축, 혹은 5축 가공기라고 불리며, 3D 프린터라고 부르기 보다는 CNC[1](Computer Numerical Control)의 범주에 포함되는 장비이다. 5축 가공기는 통념적인 3D 프린터와 가공방식(컴퓨터 수치제어, 즉 CNC)이 전혀 다르기 때문이다. 5축 가공기와 일반 3D 프린터의 공통점은 입체 조형이 자유롭다는 점(다만 5축 가공기는 제한이 좀 있다.)과 가격대가 억 소리 난다는 것 정도 밖에 없다. 5축 가공기는 이미 상용화되어 산업현장에 널리 쓰이고 있으며 그다지 새롭다고 볼 수 없는 기술이다. CNC 항목의 가공 영상도 5축 가공기이다.

일반적인 개념에서 CNC 가공은 입체 인쇄의 범주에 들어가지 않으나(이것은 이미 시작부터 재료가 입체 형태로 구현되어 있는 상태이기 때문이다), 작동방식에 있어서 3D 프린터와 유사한점이 굉장히 많다. 그리고 무엇보다, DIY 3D 프린터 제작에 있어서 CNC를 이용한 판재나 뼈대가 굉장히 많이 쓰이기 때문에, 3D 프린터에 대해서 알아보다보면 높은 빈도로 CNC 가공을 접하게 된다. CNC가 재료를 깎아낸다면 3D프린터는 빈공간에 재료를 적층한다. 정반대의 작업을 한다. 굳이 절삭형 3D프린터를 찾자면 종이를 출력하여 접착하여 절삭하는 종이 3D프린터를 예로 들 수 있다.

적층형

매질을 층층이 쌓아 올려 조형하는 "Printing layer by layer" 과 "Printing point by point"방식이 있다. 일반적으로 3D 프린터라면 이 쪽을 가리킨다. 작동 방식이나 재료에 따라 구분되며, 절삭방식으로 알려진 CNC가공에 비하여 3D 프린팅의 가장 큰 장점은 적층이 가능하므로 내부에 굉장히 정교한 구조를 구현할 수 있다는 점이다. CNC 가공의 경우 엔드밀이 어떻게든 들어갈 공간이 필요하다. 즉 입구는 좁은데 속은 넓거나 한 디자인은 제작이 거의 불가능 하다. 하지만 AM의 경우 일부 방식이 지지대를 필요하는 것을 제외하면 이런 점에서 상당히 자유롭다. ISO와 ASTM에서는 ISO/ASTM52900[2]에서 Additive Manufacturing(AM) 기술들을 BJ, DED, ME, MJ, PBF, SL, VP 이렇게 7가지로 분류한다.

Binder Jetting(접착제 분사방식)

분말 재료 위에 액상 접착제를 뿌려서 적층하는 방식이다. 이 방식은 주로 저렴한 금속 인쇄 및 대형 모래 주조 금형에 가장 일반적으로 사용된다.

  • 강점: 저비용 금속 부품, 매우 큰 부품을 생산 가능하다.
  • 약점: [3]만큼 좋지 않은 치수 정확도와 DMLS / SLM만큼 좋지 않은 기계적 성질을 가지고 있다.[4]

3DP(3 Dimension Printing)

잉크젯(inkjet)으로 부르기도 하는 이 방식은 얇게 분말재료를 필드에 까는 것은 PBF 방식과 비슷하지만 레이저가 아닌 접착제를 분사하여 굳히는 방식이다.

  • 강점: 3D 프린터 중 상대적으로 빠른 조형이 가능하고 접착제와 함께 칼라 용액을 분사하므로 색을 입힐 수 있다. 다른 방식에서는 색을 아예 입힐 수가 없거나 제약이 매우 크지만 3DP방식은 비교적 자유롭다.
  • 단점: 제품의 내구성을 오로지 분사되는 접착제에 의존한다.

Directed Energy Deposition(에너지 집중식 퇴적 방식)

열 에너지를 집중시켜 레이저로 물질을 용접하여 적층하는 하는 방식이다. 다른 적층형과는 다르게 재료가 바닥에 쌓여있는게 아니라 레이저와 함께 움직인다. 쉽게말해서 인두기와 땜납 공급기가 자동으로 움직이면서 적층해 나간다. 재료는 땜납처럼 금속선도 사용가능하지만 보통 금속 파우더를 분사한다.

DED방식[5]의 프린터. DED방식의 프린터는 CNC 머신과 같이 붙어있는데, 3D 프린팅에서 거의 필수 수준의 마감작업을 CNC가 알아서 깎아준다. 아무래도 용접-적층 방식이다보니 표면거칠기를 조도 향상을 위해 CNC를 사용할 수 밖에 없는 구조이다..

  • 강점: 사용되는 소재와 적층되는 부위의 소재만 같다면 굳이 평평한 부분만 아니라 어떤 형상을 가진 물체 위에서도 금속을 용접 혹은 적층할 수 있다는 특징이 있어서 파손된 금형 부위를 보수하는 용도로서 금형 보수 분야에서 관심받고 있다.

Material Extrusion(재료 압출방식)

Material Jetting(재료 분사방식)

액상 광경화성 수지를 노즐에서 분사한 후 자외선을 경화시키는 방식을 이용하여 굳혀 적층하는 방식이다. 잉크젯의 3D 프린터 버전이라고 보면 된다. SLA방식과 3DP방식을 섞은 방식이다.

  • 강점: 다른 방식들은 한 물체를 한가지의 색상으로만 프린팅 할수 있지만 MJ는 다양한 색상으로 프린팅이 가능하다. 또한 DLP와 같이 높은 정밀도를 자랑하고 투명한 소재를 사용 가능해서 돋보기에 쓸만한 광학 렌즈를 프린팅 할수 있다.
  • 단점: 소재의 제한이 따르며 소재의 내구성이 좋지 않고 빛에 민감하다.

Powder Bed Fusion

얇게 분말재료를 필드에 깐 다음 레이저로 선택된 부분만 녹여 굳히기를 반복하여 제품을 만드는 방식이다. 특수모래, 금속분말, 합성수지 등 분말로 된 소재라면 어떤 소재라도 가능하나 분말의 입자가 균일해야 하고 각 소재별로 레이저의 세팅을 따로 해야 하므로 세팅이 힘들다. 또한 3D 프린터 장비와 사용되는 소재 모두 가격이 만만치 않으며 유지 비용도 싼 편은 아니다. 출력하는 속도가 다른 방식과는 다르게 빠르지만 레이저를 쏴서 녹이는 과정은 레이저를 강한걸 쓰던지 여러 레이져로 병렬화를 하던지 해서 속도를 올릴 수 있지만 문제는 그 위를 파우더로 다시 덮는 코팅 과정이 속도를 빠르게 하는데 한계가 있다.

Sheet Lamination(표면 접착방식)

Vat Photopolymerization(광수지화 방식)

활용 사례

3D 프린터는 전통적으로 항공이나 자동차와 같은 제조업 분야에서 주로 활용되었으나, 최근에는 그 활용 영역을 빠르게 넓혀 가고 있다. 가장 대표적인 분야가 의료, 건설, 소매, 식품, 의류 산업이다.

  • 배아: 영국 케임브릿지 대학에서 2017년 3월에 3D 프린터로 인쇄한 골격과 쥐의 줄기세포를 합성해 배아를 만드는 데 성공했다.
  • 인공심장: 2019년 4월 15일 이스라엘의 텔아비브대 연구진이 세계최초로 3D 프린터를 이용하여 세포와 혈관·심실 등으로 가득한 인공심장을 3D 프린팅으로 완벽하게 구현해냈다.
  • 의료: 2019년 영국에서 머리가 붙은 샴썅둥이 분리 수술을 3번의 수술 끝에 분리에 성공했는데, 의료진들은 수술하기 전 3D 프린팅을 이용해 샴쌍둥이의 골격을 닮은 플라스틱 모형을 이용해 수술 연습을 하였다고 한다.
  • 건설: 프랑스 낭트에 가면 세계 첫 공공주택 이누바(Yhnova)를 볼 수 있다. 2019년 6월부터 실제로 사람이 거주하고 있다.
  • 아파트: 중국 건설업체 윈선은 2015년 1월에 6일만에 3D 프린터로 5층의 아파트를 지었으며 이 건물은 세계에서 제일 높은 3D 프린터로 만든 건물이다.

문제점

3D 프린팅은 컴퓨터로 만든 설계도를 입력하면 그 설계에 따라 종이, 플라스틱 액체 등의 원료로 3차원(3D)의 입체적 고체 물질을 프린트하는 출력 기술이다. 이러한 3D 프린터가 대중화가 되면 사회에 놀라운 변화를 가져올 것이 확실한 기술이지만 다른 한편으로는 저작권, 복제에 대한 문제가 새롭게 대두될 수 있는 계기가 될 확률이 매우 높다. 예를 들어 누구나 권총 설계도를 가지고 있다면 3D 프린팅으로 플라스틱 권총을 만들 수 있다.[6] 3D 프린팅으로 만든 플라스틱 권총으로 실탄을 쏠 수도 있다고 한다. 이에 따라 실제로 미국 연방정부는 플라스틱 권총 설계 도면 배포를 중지시켰다. 또한 상당한 기술력이 들어간 복잡한 설계의 물건도 설계도만 있다면 3D프린터로 만들어 낼 수 있는데 만약 어느 회사의 핵심 설계도가 유출돼 똑같은 디자인과 똑같은 디자인으로 특정 국가에서 매우 값싸게 시장에 판매 된다면 매출 타격은 물론이고 그 회사의 이미지까지도 타격을 받을 수 밖에 없다. 현재 제일 큰 문제는 이러한 저작권 및 복제에 대한 문제에 대한 해결책으로는 정부의 규제 및 기업의 보안이라는 대책밖에 없다는 점이다.

전망

세계 4대 회계법인 중 하나인 딜로이트는 매년 다양한 산업 예측 보고서를 작성하는데 각종 첨단 산업의 2109년 전망이 담긴 예측 보고서를 제시했다. 'TMT(Technology, Media and Telecommunications)-Predictions-2019'라는 제목의 보고서이다. 이 보고서의 내용 중 3D 프린터에 대한 전망도 나와있는데, 2014년 3D 프린터 시장의 붐이 일어났던 때와 비슷하게 2019년 3D 프린터 시장이 재도약할 것이라는 예측과 함께 미래전망이 밝다고 했다.[7]그 이유는 다음과 같다.

  • 2014년과 달리 2019년 3D 프린터 재료의 수가 두 배 이상 늘어 났으며, 또한 여러 재료를 복합적으로 출력가능한 3D 프린터가 등장하였다.
  • 과거에 금속 3D 프린팅은 SLS(Selective Laser Sintering)방식으로 출력 했지만 최근에는 보다 빠른 Binder Jet Printing 방식의 출력 방식이 주로 쓰이면서 과거와 다르게 3D 프린터의 출력 속도가 2배 이상 증가했으며 앞으로도 증가할 것이다.
  • 과거 고성능의 금속 3D 프린터는 10*10*10cm의 빌드 볼륨을 갖고 있었으나 최근 많은 수의 금속 3D 프린터가 30*30*30cm의 빌드 볼륨을 가지고 있어 실제 소비자들이 사용하는 제품의 부품으로 활용될 수 있을 만큼의 출력 가능한 크기가 확장되었다.
  • 신규 대기업들이 3D 프린터에 관심을 가지고 3D 프린팅 시장에 진입함으로써 시장을 검증하고 전체 산업을 훨씬 더 바르게 혁신하도록 하고 있다는 점이다.

앞으로 로봇, AI 등의 신기술과 3D 프린터의 결합을 통해 3D 프린터가 4차산업혁명의 스마트 공장의 한 부분을 차지하게 될 것이다.

각주

  1. CNC〉,《나무위키》
  2. ISO/ASTM 52900:2015〉,《ISO》
  3. DMLS / SLMDMLS/SLM〉,《3D HUBS》
  4. Binder Jetting〉,《3D HUBS》
  5. Directed Energy Deposition〉,《YOUTUBE》
  6. Liberator-Dawn Of the Wiki Weapons〉,《YOUTUBE》
  7. 쓰리디톡, 〈딜로이트, 3D 프린터 다시 한 번 급성장 예상?〉,《네이버 블로그》, 2019-01-28

참고자료

같이 보기


  검수요청.png검수요청.png 이 3D 프린팅 문서는 산업혁명에 관한 글로서 검토가 필요합니다. 위키 문서는 누구든지 자유롭게 편집할 수 있습니다. [편집]을 눌러 문서 내용을 검토·수정해 주세요.