|
|
(사용자 2명의 중간 판 7개는 보이지 않습니다) |
1번째 줄: |
1번째 줄: |
− | '''합성수'''<!--합성수-->는 | + | '''합성수'''(合成數, Composite Number)<!--Composite Number-->는 1보다 큰 [[자연수]] 중 1과 자기자신외에 또 다른 [[약수]]를 갖는 자연수를 말한다. 예를 들어, 6은 약수가 1, 2, 3, 6으로 1과 6을 제외해도 두 개의 약수가 있다. 따라서 6은 합성수이다. |
| | | |
| ==개요== | | ==개요== |
| + | 합성수는 1보다 큰 [[자연수]] 중에서 [[소수]]가 아닌 수를 말한다. 합성수가 중요한 이유에 대해서 예를 들자면 기수법이 있는데, 2 이상의 자연수 <math>p</math>에 대하여 <math>p</math>가 합성수이고 <math>p</math>의 약수가 <math>1,{d_0},{d_1},...,p</math>일 때, <math>p</math>진법에서 어떤 수가 비순환소수(유한소수)가 되려면 그 수의 분모를 소인수분해했을 때 오직 <math>p</math>의 약수(<math>1,{d_0},{d_1},...,p</math>)로만 이루어져야 함이 알려져 있다. 왜냐하면, <math>p</math>의 약수로 이루어진 수는 곧바로 <math>p</math>의 거듭제곱꼴이 되는 수를 분모, 분자에 곱하게 되면 유한소수가 되기 때문이다. 그 예로, 인류가 사용하는 진법은 10진법이기 때문에, 분모가 2, 5로만 이루어져야 유한소수가 되는 건 자명한 사실이다. 로그에서 밑이나 진수가 합성수인 경우, 밑의 변환공식(<math>log_{a}b = log_{c}b / log_{c}a</math>)을 사용하면 밑이든 진수이든 합성수인 쪽이 덧셈이나 나눗셈으로 찢어지는 특징이 있다. 자연수 범위에서 최초의 합성수는 4이다. 또한 2를 제외한 모든 짝수는 합성수이다.<ref>〈[https://namu.wiki/w/%ED%95%A9%EC%84%B1%EC%88%98 합성수]〉, 《나무위키》</ref> |
| | | |
| {{각주}} | | {{각주}} |
| | | |
| ==참고자료== | | ==참고자료== |
| + | * 수학방 공식 홈페이지 - https://mathbang.net/199 |
| + | * 〈[http://study.zum.com/book/14467 소수와 합성수]〉, 《zum 학습백과》 |
| + | * 〈[https://namu.wiki/w/%ED%95%A9%EC%84%B1%EC%88%98 합성수]〉, 《나무위키》 |
| + | * 백이십타, 〈[https://subacci.tistory.com/16 (동영상)소수(합성수, 소수의 성질)(중학교1학년수학-1)]〉, 《티스토리》, 2016-02-24</ref> |
| | | |
| ==같이 보기== | | ==같이 보기== |
| + | * [[소수 (수)|소수]] |
| + | * [[자연수]] |
| + | * [[약수]] |
| | | |
− | {{암호 알고리즘|검토 필요}} | + | {{수|검토 필요}} |
| + | {{암호 알고리즘}} |
합성수(合成數, Composite Number)는 1보다 큰 자연수 중 1과 자기자신외에 또 다른 약수를 갖는 자연수를 말한다. 예를 들어, 6은 약수가 1, 2, 3, 6으로 1과 6을 제외해도 두 개의 약수가 있다. 따라서 6은 합성수이다.
합성수는 1보다 큰 자연수 중에서 소수가 아닌 수를 말한다. 합성수가 중요한 이유에 대해서 예를 들자면 기수법이 있는데, 2 이상의 자연수 에 대하여 가 합성수이고 의 약수가 일 때, 진법에서 어떤 수가 비순환소수(유한소수)가 되려면 그 수의 분모를 소인수분해했을 때 오직 의 약수()로만 이루어져야 함이 알려져 있다. 왜냐하면, 의 약수로 이루어진 수는 곧바로 의 거듭제곱꼴이 되는 수를 분모, 분자에 곱하게 되면 유한소수가 되기 때문이다. 그 예로, 인류가 사용하는 진법은 10진법이기 때문에, 분모가 2, 5로만 이루어져야 유한소수가 되는 건 자명한 사실이다. 로그에서 밑이나 진수가 합성수인 경우, 밑의 변환공식()을 사용하면 밑이든 진수이든 합성수인 쪽이 덧셈이나 나눗셈으로 찢어지는 특징이 있다. 자연수 범위에서 최초의 합성수는 4이다. 또한 2를 제외한 모든 짝수는 합성수이다.[1]
참고자료[편집]
같이 보기[편집]
이 합성수 문서는 수학에 관한 글로서 검토가 필요합니다. 위키 문서는 누구든지 자유롭게 편집할 수 있습니다. [편집]을 눌러 문서 내용을 검토·수정해 주세요.
|
일반 : 자연, 생물, 동물, 식물, 정치, 군사, 경제, 사회, 교육, 문화, 예술, 스포츠, 역사, 역사인물, 인간, 인체, 건강, 정신, 성격, 행동, 언어, 수학 □■⊕, 위키 도움말
|
|
수학
|
IMO • KMO • 공리 • 그래프이론 • 기하학 • 대수기하학 • 대수학 • 산수 • 산학 • 선형대수학 • 수식 • 수학 • 수학경시대회 • 수학자 • 양 • 위상수학 • 응용수학 • 이산수학 • 조합론 • 집합론 • 필즈상 • 해석학 • 도움말:수학
|
|
수
|
0 • 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 경(1016) • 공배수 • 공약수 • 구(1032) • 구골(10100) • 구골뱅 • 구골플렉스 • 구골플렉시안 • 그레이엄수(G64(4)) • 기수 • 로마숫자 • 만 • 무량대수(1068) • 무리수 • 무한대(∞) • 무한소 • 배수 • 백 • 벡터 • 복소수 • 부동소수점 • 분모 • 분수 • 분자 • 사원수 • 서수 • 소수 (decimal) • 소수 (prime number) • 소수점 • 수 • 숫자 • 스칼라 • 승수 • 실수 • 십진수 • 아라비아숫자 • 약수 • 양(1028) • 양수 • 억 • 원주율(π) • 유리수 • 음수 • 이진수 • 자(1024) • 자연로그의 밑(e) • 자연수 • 정수 • 조(1012) • 지수 • 천 • 합성수 • 해(1020) • 허수(i) • 황금비(φ)
|
|
계산
|
! • ↑ • cos • f(x) • lim • log • sin • tan • ∑ • ∫ • 가감승제 • 값 • 결합법칙 • 계산 • 곱 • 곱셈 • 곱하기 • 공식 • 교환법칙 • 구간 • 구구단 • 극한 • 근 • 근사값 • 나누기 • 나눗셈 • 나머지 • 난이도 • 내림 • 다항식 • 답 • 더하기 • 덧셈 • 도함수 • 독립변수 • 등식 • 라마누잔합 • 로그 • 루트(√) • 리만가설 • 몫 • 무한급수 • 미분 • 미적분 • 미지수 • 반올림 • 발산 • 방정식 • 백분율 • 변수 • 부등식 • 분배법칙 • 비례식 • 비율 • 빼기 • 뺄셈 • 사칙연산 • 산수 • 삼각함수 • 삼차방정식 • 상수 • 상용로그 • 셈 • 수렴 • 수열 • 시그모이드 함수 • 식 • 약분 • 역수 • 역함수 • 역행렬 • 연산 • 오일러 공식 • 오일러 등식 • 올림 • 이차방정식 • 인수 (수학) • 인수분해 • 자연로그 • 적분 • 전개 • 정답 • 정리 • 정의역 • 제곱 • 제곱근 • 종속변수 • 증명 • 지수 • 차수 • 천분율 • 치역 • 퍼센트(%) • 풀이 • 피타고라스 정리 • 함수 • 합 • 항 • 항등식 • 해 • 행렬
|
|
도형
|
각도 • 각뿔 • 곡면 • 곡선 • 구 • 그래프 • 길이 • 내심 • 넓이 • 높이 • 다각형 • 다면체 • 도형 • 둔각 • 둘레 • 마름모 • 면 • 면적 • 무게중심 • 반경 • 반구 • 반원 • 반지름 • 방심 • 변 • 부피 • 빗변 • 사각뿔 • 사각형 • 사다리꼴 • 삼각뿔 • 삼각형 • 선 • 선분 • 수심 • 쌍곡선 • 예각 • 오각형 • 외심 • 원 • 원기둥(원통) • 원뿔 • 원환체(도넛모양) • 육각형 • 이등변삼각형 • 입체 • 점 • 점선 • 정사각형 • 정사면체 • 정삼각형 • 정오각형 • 정육각형 • 정육면체 • 정팔각형 • 정팔면체 • 좌표 • 좌표계 • 좌표축 • 좌표평면 • 중첩 • 지름 • 직각 • 직경 • 직사각형 • 직선 • 직육면체 • 차원 • 초입방체(하이퍼큐브) • 축 • 타원 • 테서랙트 • 텐서 • 팔각형 • 평면 • 평행사변형 • 포물선 • 호
|
|
집합
|
공집합(Ø) • 교집합(∩) • 무한집합 • 벤 다이어그램 • 부분집합(⊂) • 알레프수(ℵ) • 여집합 • 원소 • 유한집합 • 전체집합 • 집합 • 차집합 • 합집합(∪)
|
|
통계
|
경우의 수 • 기댓값 • 기하평균 • 모분산 • 모집단 • 모평균 • 분산 • 분포 • 사건 • 산술평균 • 산포도 • 상관관계 • 순열 • 신뢰구간 • 신뢰도 • 유의수준 • 전수조사 • 정규분포 • 조합 • 조화평균 • 중앙값 • 통계 • 통계학 • 편차 • 평균 • 표본 • 표본분산 • 표본조사 • 표본평균 • 표준편차(σ) • 최빈값 • 합계 • 확률 • 확률밀도함수 • 회귀분석
|
|
수학자
|
갈릴레오 갈릴레이 • 게오르크 칸토어 • 고트프리트 빌헬름 라이프니츠 • 니콜로 폰타나(타르탈리아) • 다비트 힐베르트 • 레오나르도 피보나치 • 레온하르트 오일러 • 로널드 그레이엄 • 르네 데카르트 • 버트런드 러셀 • 베르너 하이젠베르크 • 베른하르트 리만 • 브룩 테일러 • 블레즈 파스칼 • 스리니바사 라마누잔 • 아르키메데스 • 아이작 뉴턴 • 알콰리즈미 • 앙리 푸앵카레 • 오거스터스 드 모르간 • 요하네스 케플러 • 요한 베르누이 • 유클리드(에우클레이데스) • 유휘 • 이순지 • 이임학 • 조제프-루이 라그랑주 • 조지 불 • 존 내시 • 존 네이피어 • 존 월리스 • 존 폰 노이만 • 지롤라모 카르다노 • 최석정 • 카를 프리드리히 가우스 • 토머스 베이즈 • 피에르 드 페르마 • 피타고라스 • 헤론 • 홍정하 • 히파르코스
|
|
기타
|
IMO • KMO • 국제수학연맹 • 세계수학자대회 • 올림피아드 • 필즈상
|
|
위키 : 자동차, 교통, 지역, 지도, 산업, 기업, 단체, 업무, 생활, 쇼핑, 블록체인, 암호화폐, 인공지능, 개발, 인물, 행사, 일반
|
|
블록체인 : 블록체인 기술, 합의 알고리즘, 암호 알고리즘 □■⊕, 알고리즘, 블록체인 플랫폼, 블록체인 솔루션, 블록체인 서비스
|
|
암호기술
|
개인키 • 경량암호 • 다자간 계산(MPC) • 다중서명(멀티시그) • 동형암호 • 디지털서명 • 링서명 • 배타적 논리합(XOR) • 복호화 • 블랙박스 암호 • 서명 • 소수 • 소인수분해 • 슈노르서명 • 스케인 • 스키테일 • 스테가노그래피 • 안전한 다자간 계산(SMPC) • 암호 • 암호경제학 • 암호문 • 암호키 • 암호학 • 암호화 • 이산로그 • 전자봉투 • 전자서명 • 전치암호 • 종단간 암호화 • 치환암호(대체암호) • 키 • 패딩 • 패스워드 • 평문 • 합성수 • 해독 • 해시 • 형태보존암호 • 혼돈 • 화이트박스 암호 • 확산
|
|
논리연산
|
논리곱(AND) • 논리연산 • 논리합(OR) • 배타적 논리합(XOR) • 부울곱 • 부울대수 • 부울합 • 부정논리곱(NAND) • 부정논리합(NOR) • 부정연산(NOT)
|
|
SHA
|
SHA • SHA0 • SHA1 • SHA2 • SHA224 • SHA256 • SHA384 • SHA512 • SHA512/224 • SHA512/256 • SHA3 • SHA3-224 • SHA3-256 • SHA3-384 • SHA3-512
|
|
MD
|
MD • MD2 • MD4 • MD5 • RIPEMD • RIPEMD-128 • RIPEMD-160 • RIPEMD-256 • RIPEMD-320
|
|
기타 해시
|
CRC-16 • CRC-32 • CRC-64 • Keccak-256 • Keccak-384 • Keccak-512 • Shake-128 • Shake-256 • 베이스32 • 베이스32 파일 • 베이스58 • 베이스64 • 베이스64 파일 • 순환중복검사
|
|
대칭키
|
AES • ARIA(아리아) • DES • HIGHT(하이트) • LEA • SEED(시드) • 대칭키 • 대칭키 암호 알고리즘 • 디피-헬만 • 디피-헬만 키교환 • 레인달 • 블로피시 • 블록암호 • 스트림 암호 • 에스박스(S-Box) • 트리플 DES
|
|
비대칭키
|
PKI • RSA • 공개키 • 공개키 암호 알고리즘 • 비대칭키 • 엘가말 • 타원곡선 • 타원곡선 디지털서명 알고리즘 • 타원곡선암호
|
|
영지식증명
|
영지식 상호 증명(ZKIP) • 영지식 스나크 • 영지식 스타크 • 영지식증명
|
|
양자암호
|
BB84 프로토콜 • E91 프로토콜 • B92 프로토콜 • 비밀키 오류율 • 안전성 증명 • 양자난수생성기 • 양자내성암호 • 양자암호 • 양자얽힘 • 양자역학 • 양자중첩 • 양자컴퓨터 • 양자키 • 양자키분배 • 양자통신 • 연속 변수 프로토콜
|
|
암호해독
|
기지평문공격(KPA) • 선택암호문공격(CCA) • 선택평문공격(CPA) • 암호공격 • 암호문 단독공격(COA) • 암호해독
|
|
암호학 인물
|
라이언 플레이페어 • 레너드 애들먼 • 로널드 리베스트 • 마틴 헬만 • 블레즈 드 비즈네르 • 아디 샤미르 • 앨런 튜링 • 웨슬리 피터슨 • 찰스 휘트스톤 • 휫필드 디피
|
|
위키 : 자동차, 교통, 지역, 지도, 산업, 기업, 단체, 업무, 생활, 쇼핑, 블록체인, 암호화폐, 인공지능, 개발, 인물, 행사, 일반
|
|