행동패턴
행동 패턴(Behavioral patterns)은 오브젝트 사이의 상호작용과 오브젝트의 역할(책임)에 대한 것이다. 행위 패턴이라고도 한다.[1]
목차
종류
Chain of Responsibility 패턴
여러 개의 객체 중에서 어떤 것이 요구를 처리할 수 있는지를 사전에 알 수 없을 때 사용된다. 즉 요청 처리가 들어오게 되면 그것을 수신하는 객체가 자신이 처리 할 수 없는 경우에는 다음 객체에게 문제를 넘김으로써 최종적으로 요청을 처리 할 수 있는 객체의 의해 처리가 가능하도록 하는 패턴이다.
위 그림을 보면 Sender 객체가 Handler 객체에 요청을 하며 그 요청이 수행되는 구조와 일련의 과정들이 나타나 있다.
왼쪽의 class diagram을 통해서 Handler 클래스를 상속하고 있는 다른 처리 클래스가 존재한다는 것을 알 수 있고, 오른쪽의 Sequence diagram을 통해서 그 과정이 Handler 클래스를 상속하고 있는 Receiver 1,2,3 클래스의 객체로 이루어진다는 것을 알 수 있다.
이 패턴은 자바의 Exception Handling과 같은 원리인데 try문으로 코드를 실행시켜서 안되면 이어지는 catch문들이 그것을 처리하고 마지막에 finally가 처리한다는 면에서 비슷하다고 보는 것이다.[2]
커맨드(Command) 패턴
커맨드 패턴은 사용자가 요구하는 명령어를 객체에 캡슐화(encapsulation)하여 저장한다. 각각의 명령어에 해당하는 객체는 그 명령어에 해당하는 기능을 실행하며, 필요에 따라 '명령 취소' 기능을 제공한다. 명령어와 관련된 사항이 객체에 캡슐화되어 있기 때문에, 사용자들은 단순히 그 명령어 객체를 생성해서 사용하기만 하면 된다. 또한, 이러한 명령어 객체들은 모두 공동의 상위 클래스를 갖고 있다. 이 상위 클래스는 각 명령어 객체의 클래스가 구현해야 할 메소드를 정의하고 있다. 예를 들어, 워드 프로세서에서 사용되는 '복사', '잘라내기', '붙여넣기'에 해당하는 명령어 클래스를 각각 CopyCommand, CutCommand, PasteCommand 라고 하고 이 세 클래스가 상속받는 추상 클래스를 AbstractCommand 라고 하면 전체적인 클래스 사이의 관계는 다음 그림과 같을 것이다.[3]
AbstractCommand 클래스는 모든 명령어 클래스가 상속받아야 할 클래스로서 추상 메소드인 execute()와 undo()를 선언하고 있다. 메소드의 이름에서 알 수 있듯이 execute() 메소드는 명령어에 해당하는 기능을 실행하기 위해 호출되는 메소드이며, 따라서 execute#40;) 메소드는 실제 기능을 구현하고 있다. 반면에 undo() 메소드는 '명령 취소'에 해당하는 기능을 제공한다. AbstractCommand 추상 클래스를 상속받는 클래스들은 그 클래스에 알맞도록 execute() 메소드와 undo() 메소드를 구현하면 된다. 예를 들어, CopyCommand 클래스의 execute() 메소드는 사용자가 설정한 블럭에 속한 글자들을 클립보드에 복사할 것이며, undo() 메소드는 클립보드에 저장되어 있는 글자들을 삭제할 것이다.[3]
이제 남은 것은 각각의 명령어 객체를 저장하고 관리해주는 관리자 클래스인 CommandManager 클래스가 필요하다. 이 클래스는 실행되는 명령어를 차례대로 저장하고 있으며, 사용자가 '명령취소'를 요청할 경우 가장 최근에 저장된 명령어 객체의 undo() 메소드를 호출해주는 역할을 한다. 즉, 전체적인 클래스 사이의 관계는 다음과 같다.
여기서 Invoker는 워드프로세서의 경우 사용자가 메뉴를 선택하거나 툴바를 클릭했을 때 발생하는 이벤트를 처리해주는 이벤트 리스너(예를 들어, ActionListener나 ItemListener 등)가 되며, ConcreteCommand 클래스는 CopyCommand와 CutCommand와 같이 실제 명령을 실행(구현)하는 명령어 객체를 나타낸다. CommandManager는 AbstractCommand를 관리하는 클래스이다.[3]
인터프리터(Interpreter) 패턴
문장을 해석할 때 사용하는 패턴이다. 간단한 셸 커맨드 처리, 통신 프로토콜 처리, 수식계산, 도메인 기반 언어(Domain Specific Language - SQL, XML, JSF등)의 해석에 주로 많이 쓰인다. 일반프로그래밍 언어처럼 문장구성이 복잡해지면 사용하지 않는 것이 낫다.
중심이 되는 하나의 interprete 메소드에 많은 의무가 달려있기 때문에, 실제적으로 작성하는 코드에서 이 패턴을 사용해 코딩하는 일은 많지 않다.
Client는 문장해석의 주체이면서,인터프리터를 문장에 대해 적용한다.
아래 다이어그램을 보면 TerminalExpression과 NonterminalExpression이 존재한다. 트리구조를 생각하면 편하다. 표현식안에 다른 표현식(자식 노드가 있는 경우)에는 다시 평가(Evaluation)을 수행해야 한다. Context는 interpreter(해석기)의 전역정보를 가지고 있다.[4]
반복자(Iterator) 패턴
접근기능과 자료구조를 분리시켜서 객체화한다. 서로 다른 구조를 가지고 있는 저장 객체에 대해서 접근하기 위해서 interface를 통일시키고 싶을 때 사용하는 패턴이다.
- Iterator : 집합체의 요소들을 순서대로 검색하기 위한 인터페이스 정의
- ConcreateIterator : Iterator 인터페이스를 구현함
- Aggregate : 여러 요소들로 이루어져 있는 집합체
중재자 패턴(Mediator Pattern)
한 집합에 속해있는 객체들의 상호 작용을 캡슐화하는 객체를 정의하는 패턴이다. 중재자는 객체들이 직접 서로 참조하지 않도록 함으로써 객체들 간의 느슨한 연결을 촉진시키며 객체들의 상호작용을 독립적으로 다양화시킬 수 있도록 해준다.
- Mediator은 Colleague가 Mediator에서 알려주는 것을 의미하고, ColleagueA도 마찬가지로 Mediator가 ColleagueA, B에게 알리는 것을 의미한다.
옵저버(Observer) 패턴
객체들 사이에 1 : N 의 의존관계를 정의하여 어떤 객체의 상태가 변할 때, 의존관계에 있는 모든 객체들이 통지받고 자동으로 갱신될 수 있게 만드는 패턴이다.
상태(State) 패턴
객체의 내부 상태가 변경될 때 행동을 변경하도록 허락한다. 객체는 자신의 클래스가 변경되는 것처럼 보이게 된다.
스트레이트지(Strategy) 패턴
동일 계열의 알고리즘들을 정의하고 각각 캡슐화하며 이들을 상호교환 가능하도록 만드는 것이다. 알고리즘을 사용하는 사용자로부터 독립적으로 알고리즘이 변경될 수 있도록 하는 패턴이다.
템플릿(Template) 패턴
객체의 연산에서 알고리즘의 뼈대만 정의하고, 나머지는 서브클래스에서 이루어지게 하는 패턴이다. 템플릿 패턴은 알고리즘의 구조는 변경하지 않고 알고리즘의 각 단계를 서브클래스에서 재정의하게 된다.
비지터(Visitor) 패턴
객체구조를 이루는 원소에 대해 수행할 연산을 표현한다. 방문자는 연산에 적용할 원소의 클래스를 변경하지 않고 새로운 연산을 재정의 할 수 있다.
각주
- ↑ 도킨샤, 〈Chapter 1.디자인 패턴 소개 〉, 2020-01-07
- ↑ 귤덕, 〈Chain of Responsibility Pattern (책임 사슬 패턴) 〉, 2018-03-02
- ↑ 3.0 3.1 3.2 자바캔, 〈커맨드패턴과 그 구현 〉
- ↑ IDEO, 〈인터프리터 패턴 - 자바 디자인 패턴과 JDK 예제 〉, 2016-03-25
- ↑ Lkt_Programmer, 〈08 반복자 패턴(Iterator Pattern) 〉, 2017-09-24