"생성형 AI"의 두 판 사이의 차이
leejia1222 (토론 | 기여) (새 문서: '''생성형 AI'''는 대규모 데이터와 패턴을 학습하고 기존의 데이터를 활용하여 이용자의 요구에 따라 텍스트, 이미지, 비디오, 음악, 코딩...) |
(차이 없음)
|
2024년 7월 30일 (화) 17:47 판
생성형 AI는 대규모 데이터와 패턴을 학습하고 기존의 데이터를 활용하여 이용자의 요구에 따라 텍스트, 이미지, 비디오, 음악, 코딩 등 새로운 결과를 만들어 내는 인공지능 기술을 말한다. 누구나 쉽게 활용할 수 있도록 설계되며 텍스트, 이미지, 영상, 음성, 글쓰기, 프로그래밍 등 다양한 영역에서 활용 가능하다.
연령, 직업에 관계 없이 생성형 AI를 활용하게 되면서 인공지능 활용이 일상화되었으며, 개인이 필요로 하는 학업 및 일하는 방식 등에 생산성과 효율성이 향상됐다. 개인뿐만 아니라 산업에서도 생성형 AI를 도입하려는 활발한 움직임이 있다.
목차
활용 사례
텍스트
챗GPT
챗GPT(Chat GPT)는 오픈AI(OpenAI)가 개발한 프로토타입 대화형 인공지능 챗봇이다. 챗GPT는 대형 언어 모델 GPT-3의 개선판인 GPT-3.5를 기반으로 만들어졌으며, 지도학습과 강화학습을 모두 사용해 파인 튜닝되었다. 챗GPT는 Generative Pre-trained Transformer(GPT)와 Chat의 합성어이다. 챗GPT는 2022년 11월 프로토타입으로 시작되었으며, 다양한 지식 분야에서 자세한 답과 자세한 답으로 자세하게 자세히 주목 받았다. 다만, 지식의 맞춤도는 중요한 정보으로 지적되고 있다. 챗GPT는 인간과 유사한 글자를 생성하는 뛰어난 기능을 입증했지만 훈련 데이터에 존재하는 편견을 쉽게 상속하고 증폭할 수 있다. 이는 인종, 성별, 언어 문화 집단에 따른 다양한 견해와 태도 등 다양한 인구통계에 대한 허위 진술이나 부당한 태도로 나타날 수 있다.[1]
생성형 AI는 대규모 데이터에서 학습하여 새로운 콘텐츠를 생성하는 능력을 가지며, 챗GPT는 특히 자연어 처리와 대화 생성에서 두각을 나타낸다. 챗GPT는 2022년 11월에 출시된 이후, 다양한 분야에서 빠르게 도입되었다. 초기에는 그 활용이 주로 텍스트 기반의 대화나 질문 응답 시스템에 집중되었으나, 현재는 교육, 의료, 공공 서비스 등 다양한 분야에서 사용되고 있다. 예를 들어, 행정안전부는 공공부문에서 챗GPT를 효과적으로 활용하기 위한 가이드라인을 배포하였다.[2] 챗GPT의 기술적 기반은 GPT(Generative Pre-trained Transformer) 모델이다. 이 모델은 트랜스포머라는 신경망 구조를 기반으로 하며, 방대한 양의 텍스트 데이터를 통해 사전 학습된다. 이를 통해 자연어를 이해하고 생성하는 능력이 뛰어나게 되었다. 특히 GPT-3.5와 같은 최신 모델은 수십억 개의 매개변수를 사용하여 인간과 유사한 대화 능력을 보인다.[3]
챗GPT의 도입과 확산은 긍정적인 측면과 부정적인 측면을 모두 가지고 있다. 긍정적으로는 다양한 업무의 효율성을 높이고, 새로운 서비스 창출을 가능하게 한다. 그러나 챗GPT의 사용이 증가함에 따라 사이버 보안 문제, 개인정보 침해, 저작권 문제 등 여러 가지 문제가 제기되고 있다. 이러한 문제를 해결하기 위해서는 기술적 개선과 함께 법적, 윤리적 고려가 필요하다. 또한 챗GPT는 현재 실시간 학습이 불가능하며, 입력 데이터의 편향성 문제도 가지고 있다. 이는 AI의 응답이 항상 정확하거나 중립적이지 않을 수 있음을 의미한다. 이러한 한계는 앞으로의 연구와 개발을 통해 개선될 필요가 있다.[4] 종합적으로, 챗GPT와 같은 생성형 AI는 혁신적인 가능성을 제공하면서도, 다양한 문제와 한계를 가지고 있다. 따라서 이러한 기술을 도입하고 활용하는 과정에서 신중한 접근이 필요하다.
제미니
제미니(Gemini, 구 명칭: 바드, Bard)는 구글(Google)이 개발한 대화형 생성형 인공지능 챗봇이다. 처음에는 LaMDA 계열의 대형 언어 모델(LLM), 나중에는 PaLM에 기반을 두었다. 오픈AI의 챗GPT의 상승에 직접 대응하기 위해 개발되었으며 다른 국가들에 확장시키기 전에 2023년 3월 기능에 제한을 두고 출시되었다. 이 모델은 텍스트, 이미지, 음성 등 다양한 데이터를 처리할 수 있는 멀티모달 기능을 갖추고 있다. 제미니는 특히 긴 텍스트 블록 내에서 관련 정보를 효과적으로 찾아내는 능력을 자랑한다. 예를 들어, 제미니 1.5 프로 모델은 최대 100만 토큰의 컨텍스트 창을 가지고 있어, 긴 프롬프트에서 새로운 기술을 학습하거나 복잡한 코드 블록에서 문제를 해결하는 데 유용하다.[5]
제미니는 구글의 클라우드 기반 생성형 AI 플랫폼인 버텍스 AI(Vertex AI)를 통해 기업들에게 제공될 예정이며, 이를 통해 다양한 산업 분야에서 활용될 가능성이 크다. 제미니의 멀티모달 기능은 GPT-4와 차별화되는 점으로, 텍스트를 기반으로 이미지를 생성할 수 있는 능력을 가지고 있다.[6] 제미니는 한국에서도 큰 관심을 받고 있으며, 다양한 연구와 개발이 이루어지고 있다. 구글의 제미니는 생성형 AI의 새로운 가능성을 제시하며, 텍스트, 이미지, 음성 등의 데이터를 동시에 처리하는 능력으로 다양한 산업 분야에서 활용될 전망이다.
코파일럿
코파일럿(Copilot)은 마이크로소프트(Microsoft)가 개발한 생성형 AI 시스템으로, 빙 검색 엔진과 통합되어 사용자가 질문을 입력하면 관련 정보를 제공하거나 답변을 생성할 수 있는 능력을 가지고 있다. 기존엔 뉴 빙(New Bing), 빙 챗(Bing Chat) 등으로 불렸으나 2023년 12월 1일부로 마이크로소프트 코파일럿(Microsoft Copilot)으로 리브랜딩되었다.[7] 코파일럿은 GPT-4를 기반으로 하며, 텍스트뿐만 아니라 이미지와 음성 등 다양한 데이터를 처리할 수 있는 멀티모달 기능을 갖추고 있다.[8][9]
코파일럿은 검색엔진과의 통합을 통해 사용자에게 더 정확하고 유용한 검색 결과를 제공하는 데 초점을 맞추고 있다. 또한 마이크로소프트는 코파일럿을 통해 사용자 경험을 향상시키고, 더 나은 정보 접근성을 제공하기 위해 지속적으로 기술을 개선하고 있다. 코파일럿은 한국에서도 다양한 방식으로 사용되고 있으며, 특히 검색 엔진과의 통합을 통해 많은 사용자들에게 유용한 도구로 자리잡고 있다. 코파일럿의 주요 특징 중 하나는 다양한 데이터를 처리하고 이해하는 능력이다. 이를 통해 사용자는 텍스트, 이미지, 음성 등 다양한 형태의 데이터를 입력하여 필요한 정보를 얻을 수 있다. 코파일럿은 지속적인 기술 발전을 통해 더 나은 성능과 기능을 제공하고 있으며, 이는 다양한 산업 분야에서의 활용 가능성을 높이고 있다.[10][11]
뤼튼
뤼튼(WRTN)은 대한민국의 AI 스타트업인 ㈜뤼튼테크놀로지스(Wrtn Technologies)가 개발한 생성형 AI로, 주로 글쓰기 지원 도구로 사용된다. GPT-4와 같은 다양한 생성형 AI를 한자리에서 무료로 사용할 수 있는 서비스로, 챗GPT와 같이 대화를 통해 결과물을 생성해내는 형태이지만 뤼튼은 보다 광범위한 콘텐츠 생성을 위해 데이터 소스에 대한 추가적인 전처리와 모델 구조의 특화가 이뤄졌다. 대화뿐만 아니라 문서 요약, 소스 코드 작성, 이미지 생성, 기사 작성 등의 작업도 수행할 수 있는 텍스트 생성 도구에 초점을 맞추어 개발되었다. 이전까지는 무료 버전과 유료 버전으로 나뉘어졌지만 2023년 12월 20일부터 뤼튼의 모든 기능을 전면 모든 사용자에게 무료로 개방했다.[12]
뤼튼은 AI 기반의 글쓰기 트레이닝 도구인 '뤼튼 트레이닝(Wrtn Training)'과 전문적인 글쓰기를 위한 '뤼튼 도큐먼트(Wrtn Document)'를 제공한다. 뤼튼 트레이닝은 CES 2023에서 소프트웨어 및 모바일 앱 부문 혁신상을 수상한 바 있으며, 한글과 영어를 모두 지원하는 AI 글쓰기 도구다. 이 도구는 사용자에게 맞춤형 글쓰기 연습을 제공하여 글쓰기 능력을 향상시키는 데 중점을 두고 있다.[13] 뤼튼테크놀로지스는 창립 이후 빠른 성장세를 보이고 있다. 창립 10개월 만에 인공지능 데이터 활용 경진대회에서 우수상과 대상을 수상하며 기술력과 경쟁력을 인정받았다. 또한, 삼성전자 씨랩 아웃사이드(C-Lab Outside) 프로그램에 선정되어 사업전략 및 마케팅 지원을 받았다. 이 회사는 다양한 B2B 모델을 개발하며, 사업계획서, 보고서 작성 등 실무자의 업무를 돕는 전문적인 문장 생성 서비스도 출시했다. 이러한 서비스는 실제 업무 환경에서의 활용성을 높이기 위해 기획되었으며, 사용자들의 긍정적인 반응을 얻고 있다.[14]
아숙업
아숙업(AskUp)은 대한민국의 AI 스타트업인 ㈜업스테이지(Upstage)가 개발한 생성형 AI 챗봇이다. 아숙업은 기본적으로 OpenAI의 GPT-3.5와 GPT-4 모델을 기반으로 하며, 사용자들에게 보다 자연스럽고 정확한 대화 경험을 제공하기 위해 파인튜닝 및 프롬프트 튜닝이 적용되어 있다.[15]
아숙업의 검색, OCR 등의 기능과 크레딧 시스템이라는 특징을 가지고 있다. 먼저 아숙업은 최신 정보를 검색할 수 있는 기능을 갖추고 있다. 사용자는 '?명령어'를 통해 원하는 정보를 검색할 수 있으며, GPT-4 모델을 사용하고 싶을 때는 '!명령어'를 사용할 수 있다. 예를 들어, '?대한민국 축구'나 '!김하성 끝내기 홈런'과 같은 형태로 입력하면 된다.[16] 또한 아숙업은 이미지 속 텍스트를 인식하는 OCR 기능을 포함하고 있다. 이를 통해 사용자는 이미지에서 원하는 정보를 추출하거나 요약할 수 있으며, 텍스트가 포함된 이미지를 쉽게 처리할 수 있다. 다만, 1000자 이상의 긴 텍스트는 인식에 제한이 있다. 더불어 아숙업은 하루에 100회의 크레딧을 제공하여 사용자가 제한된 횟수 내에서 AI와 상호작용할 수 있도록 하고 있다. 추가 크레딧이 필요한 경우 이벤트를 통해 얻을 수 있다.[17]
아숙업은 건강 식단 관리, 교육 및 학습 지원 등 다양한 분야에서 활용될 수 있다. 예를 들어, '푸드렌즈' 기능을 통해 음식의 칼로리와 영양 정보를 제공하며, '오늘의 영자 신문' 기능을 통해 매일 주요 뉴스들을 영어로 제공하여 영어 공부를 돕는다. 아숙업은 카카오톡을 통해 쉽게 접근할 수 있어 사용자들에게 높은 인기를 얻고 있다. 출시 초기 3일 만에 채널 친구 3만 명을 돌파할 정도로 빠르게 성장하였으며, 많은 사용자들이 AI의 편리함과 유용성을 경험하고 있다.[18]
이미지
달리
달리(DALL-E)는 오픈AI(OpenAI)에서 개발한 이미지 생성형 인공지능으로, 텍스트 설명을 기반으로 이미지를 생성할 수 있는 모델이다. 이 모델은 GPT-3 및 GPT-4와 같은 대규모 언어 모델을 기반으로 하며, 텍스트와 이미지를 함께 학습하여 다양한 시각적 콘텐츠를 생성하는 능력을 갖추고 있다. 2023년 9월 출시된 DALL-E 3는 프롬프트를 이해하는 수준이 기존의 AI보다 월등히 뛰어나며, 텍스트를 이미지로 구현할 수 있는 전세계적으로 몇 안 되는 AI 모델이다. 2023년 10월 기준 DALL-E 3는 챗GPT 플러스(유료 버전)에 탑재되어 챗GPT 대화창 안에서, 그리고 마이크로소프트 코파일럿(Microsoft Copilot) 또는 빙 이미지 크리에이터(무료)에서 사용할 수 있다. DALL-E 3는 영어 외 다수의 언어를 이해하며, 한글로 작성된 프롬프트(명령어)도 굉장히 잘 이해한다. 영어에 부담을 느껴 AI 그림에 관심은 있지만, 실제 생성을 시도하지는 못했던 잠재 유저의 AI 그림 생성 분야로의 진입 장벽을 크게 낮춰줄 것으로 보인다.
달리는 텍스트 기반 이미지 생성, 고해상도 이미지 생성, 이미지 변형 및 수정의 주요 특징과 기능을 가지고 있다. 먼저 달리는 사용자가 제공하는 텍스트 설명을 기반으로 이미지를 생성할 수 있다. 예를 들어, "빨간 모자를 쓴 고양이"와 같은 설명을 입력하면 이에 맞는 이미지를 만들어낼 수 있다. 이는 디자이너, 예술가, 마케터 등 다양한 분야에서 창의적인 작업을 지원하는 데 큰 도움이 된다. 또한 달리 2(DALL·E 2)는 고해상도의 이미지를 생성할 수 있는 능력을 가지고 있다. 첫 번째 버전보다 해상도가 4배 향상되었으며, 더욱 사실적이고 정확한 이미지를 생성할 수 있다. 이를 통해 사용자는 더 정교한 시각적 콘텐츠를 제작할 수 있다.[19] 더불어 달리는 단순히 이미지를 생성하는 것뿐만 아니라, 기존 이미지를 변형하거나 수정하는 기능도 제공한다. 사용자는 특정 이미지를 입력하고 그 이미지에 대한 변형된 버전을 생성할 수 있어, 다양한 디자인 시안을 쉽게 만들 수 있다.[20]
달리는 다양하게 활용될 수 있다. 먼저 달리는 예술가와 디자이너에게 창의적인 영감을 제공하는 도구로 활용될 수 있다. 상상 속의 이미지를 시각화하여 새로운 아이디어를 구체화하는 데 도움을 줄 수 있다. 이는 예술 작품의 창작 과정에서 매우 유용하다. 또한 기업의 광고나 마케팅 캠페인에서도 달리가 유용하게 사용될 수 있다. 광고 이미지를 빠르게 생성하고 수정할 수 있어, 다양한 시안을 손쉽게 제작할 수 있다. 이는 마케팅 전략을 더욱 효과적으로 실행하는 데 기여한다. 더불어 달리는 교육 분야에서도 활용 가능하다. 예를 들어, 학생들이 특정 주제에 대한 시각적 자료를 필요로 할 때 달리를 사용하여 적절한 이미지를 생성할 수 있다. 또한, 연구자들은 달리를 활용하여 데이터 시각화 및 설명 자료를 제작할 수 있다.[21]
미드저니
미드저니(Midjourney)는 고품질의 시각적 이미지를 생성하는 데 특화된 생성형 인공지능(AI) 모델이다. 텍스트를 입력하면 AI가 이미지를 생성해주는(Text-to-Image) 모델로, 달리와 비슷하다. 스테이블디퓨전과 함께 가장 유명하면서 생성되는 이미지의 퀄리티가 높은 AI 이미지 제너레이터로 평가받는다. 특히 디자이너와 예술가들 사이에서 창의적 작업에 매우 유용한 도구로 평가받고 있다. 미드저니 무료 평가버전은 2023년 3월 30일 부로 임시 종료된 상태이다. 미드저니는 영국 잡지 이코노미스트에서 2022년 6월호의 표지를 만드는 데 사용되기도 했다.
미드저니는 디스코드 기반의 접근성, 프롬프트 엔지니어링 등이 특징이다. 먼저 미드저니는 디스코드(Discord) 플랫폼을 통해 접근할 수 있다. 사용자들은 디스코드 서버에 접속하여 텍스트 명령어를 입력하고 실시간으로 이미지를 생성할 수 있다. 이러한 접근 방식은 다른 사용자들과의 상호작용과 협업을 용이하게 한다. 또한, 생성된 이미지를 실시간으로 확인하고 피드백을 받을 수 있어 창의성을 자극하고 성장할 수 있는 기회를 제공한다.[22][23] 또한 미드저니는 사용자가 입력한 텍스트 명령어(프롬프트)에 따라 이미지를 생성하는데, 프롬프트 엔지니어링을 통해 더욱 정교하고 원하는 결과물을 얻을 수 있다. 예를 들어, 프롬프트에 이미지의 스타일, 주제, 구성, 배경 등을 구체적으로 포함하면 더 효과적인 결과를 얻을 수 있다. 프롬프트의 최적화는 이미지 생성의 품질과 효율성을 높이는 중요한 과정이다.[24]
미드저니는 다양한 분야에서 활용될 수 있다. 예술과 디자인 분야에서는 창작물의 초안을 그려내거나 다양한 변형을 통해 새로운 아이디어를 시각화할 수 있다. 또한, 광고나 마케팅에서도 고품질의 시각적 콘텐츠를 빠르게 제작하는 데 유용하다. 교육 분야에서도 강의 자료 제작이나 학생들의 학습 지원에 활용될 수 있다.[25]
스테이블디퓨전
스테이블디퓨전(Stable Diffusion)은 2022년에 영국의 인공지능 스타트업인 스태빌리티AI(Stability AI)에서 오픈소스 라이선스로 배포한 딥 러닝, 텍스트 투 이미지(text-to-image) 인공지능 모델이다. 텍스트 설명에 따라 상세한 이미지를 생성하는 데 주로 사용되지만 인페인팅, 아웃페인팅, 이미지 생성과 같은 다른 작업에도 적용할 수 있다. 스태빌리티 AI가 여러 학술 연구원 및 비영리 단체와 공동으로 개발했다. 스테이블디퓨전은 심층 생성 신경망의 일종인 잠재 확산 모델이다. 대다수의 이미지 인공지능들은 온라인에서만 서비스하는데, 스테이블 디퓨전은 개인의 PC로 실행 즉 로컬 환경으로 설치 및 실행 할수있는게 큰 차이점이다. 코드 및 모델 가중치가 공개되었으며 최소 8GB VRAM이 있는 일반 GPU가 장착된 대부분의 소비자 하드웨어에서 실행할 수 있다. 이는 클라우드 서비스를 통해서만 액세스할 수 있었던 DALL-E 및 Midjourney와 같은 이전의 독점 텍스트-이미지 모델에서 출발했다.
스테이블디퓨전은 고해상도 이미지 생성, 다양한 조건부 생성, 적용 범위의 확장 등이 주요 특징이다. 먼저 스테이블디퓨전은 텍스트 설명을 기반으로 고해상도의 이미지를 생성할 수 있는 능력을 갖추고 있다. 이는 이미지 생성 과정에서 기존의 디퓨전 모델과 달리 오토인코더를 활용하여 이미지의 잠재 공간(latent space)에서 학습이 이루어지기 때문이다. 이 접근 방식은 이미지의 질감을 더욱 풍부하고 세밀하게 만들 수 있다. 또한 스테이블디퓨전은 텍스트뿐만 아니라 다양한 조건을 기반으로 이미지를 생성할 수 있다. 이는 크로스 어텐션 메커니즘을 통해 텍스트, 이미지, 기타 표현을 조건으로 활용할 수 있게 한 덕분이다. 예를 들어, 사용자가 입력한 텍스트 설명과 함께 참조 이미지를 조건으로 추가하면, 해당 조건을 반영한 이미지를 생성할 수 있다.[26] 더불어 스테이블디퓨전은 단순히 이미지 생성에 그치지 않고, 비디오 생성과 같은 다른 미디어 형식으로도 확장되고 있다. 런웨이(Runway)와의 협력을 통해 개발된 Gen-1 모델은 텍스트 입력이나 참조 이미지를 사용하여 기존 영상을 새로운 영상으로 변환하는 기능을 제공한다. 이는 스테이블디퓨전 기술이 이미지 생성에서 비디오 생성으로 확장되고 있음을 보여준다.[27]
스테이블디퓨전은 다양한 곳에 활용될 수 있다. 먼저 스테이블디퓨전은 예술가와 디자이너에게 창의적인 도구로 활용될 수 있다. 예를 들어, 예술가는 텍스트 설명을 입력하여 다양한 예술 작품의 초안을 생성할 수 있으며, 디자이너는 광고나 마케팅용 이미지를 빠르게 제작할 수 있다. 이는 창작 과정에서 많은 시간을 절약하고, 다양한 아이디어를 시각적으로 구현하는 데 큰 도움이 된다.[28] 또한 교육 분야에서도 스테이블디퓨전은 강의 자료 제작이나 연구 자료 시각화에 유용하게 사용될 수 있다. 예를 들어, 복잡한 개념을 시각적으로 설명해야 할 때 스테이블디퓨전을 사용하여 관련 이미지를 생성하고 이를 강의 자료에 포함시킬 수 있다.[25] 더불어 기업들은 스테이블디퓨전을 활용하여 광고, 마케팅, 제품 디자인 등의 상업적 목적으로 이미지를 생성할 수 있다. 이는 시장 출시 속도를 높이고, 다양한 마케팅 캠페인을 더욱 효과적으로 실행하는 데 기여한다.
영상
디아이디
디아이디(D-ID)는 동영상과 이미지를 생동감 있게 변환하는 기술로 유명한 생성형 AI 회사이자 생성형 AI이다. 디아이디의 기술은 특히 사진이나 그림을 움직이는 동영상으로 변환하는 데 특화되어 있다. 이 기술은 주로 "Live Portrait"와 같은 애플리케이션에서 사용되며, 정지된 이미지를 현실감 있게 움직이는 동영상으로 만들어낸다.
디아이디의 주요 특징은 Live Portrait, AI 기반 영상 합성, 보안 및 개인정보 보호 등이다. 먼저 디아이디의 대표적인 기능 중 하나는 "Live Portrait"로, 사진을 애니메이션으로 변환하는 기술이다. 이 기술은 얼굴 인식과 딥러닝 알고리즘을 사용하여 사진 속 인물의 입술, 눈, 표정 등을 움직여 실제 사람처럼 보이게 만든다. 이는 특히 마케팅, 교육, 엔터테인먼트 분야에서 큰 인기를 끌고 있다. 또한 디아이디는 텍스트 설명을 기반으로 동영상을 생성하는 기술도 제공한다. 이는 사용자가 원하는 설명을 입력하면, 해당 설명에 맞는 동영상을 자동으로 생성해주는 기능으로, 광고 제작이나 교육 콘텐츠 개발에 유용하다. 이 기술은 AI가 텍스트를 이해하고, 그에 맞는 시각적 콘텐츠를 생성할 수 있는 능력을 보여준다. 더불어 디아이디는 이미지와 동영상 처리 과정에서 개인의 얼굴 데이터를 보호하기 위해 다양한 보안 기술을 적용한다. 얼굴 인식 기술을 사용하지만, 개인정보 보호 규정을 준수하며 데이터 유출을 방지하는 데 중점을 둔다. 이는 AI 기술이 발전함에 따라 중요성이 더욱 부각되는 부분이다.[29]
디아이디는 다양하게 활용될 수 있다. 디아이디의 기술은 마케팅과 광고 분야에서 혁신적인 도구로 사용되고 있다. 광고주는 정적인 이미지를 동적인 콘텐츠로 변환하여 더 큰 주목을 끌 수 있다. 예를 들어, 제품 사진이 살아 움직이며 제품의 특징을 설명하는 형태의 광고를 쉽게 제작할 수 있다. 또한 교육 분야에서도 디아이디의 기술은 큰 잠재력을 가지고 있다. 역사적인 인물의 사진을 애니메이션으로 변환하여 학생들이 더 쉽게 이해하고 흥미를 느낄 수 있게 한다. 이는 교육 자료의 다양성을 높이고, 학습자의 참여를 유도하는 데 효과적이다.[30] 더불어 엔터테인먼트 산업에서는 디아이디의 기술을 이용해 영화나 게임 캐릭터의 표정을 더욱 생동감 있게 만들 수 있다. 이는 사용자 경험을 향상시키고, 더욱 몰입감 있는 콘텐츠를 제공하는 데 기여한다.[3]
저작권
대한민국을 비롯해 대부분의 국가는 AI 생성물의 저작권을 인정하지 않는다. 저작권으로 인정받기 위해서는 인간의 창의성 기술, 노력의 결과로써 만든 고유한 창작물만 저작권법상 저작물로서 보호가 가능하기 때문이다. 현행 저작권법 해석에 따르면 ‘인간의 창작물’만이 저작물 이어서 ‘권리능력을 가진 자연인 또는 법인’만이 저작자로 인정한다. <저작권법 제2조>에 따르면, ‘저작물’은 인간의 사상 또는 감정을 표현한 창작물을 말한다. ‘저작자’는 저작물을 창작한 자를 말한다. 즉, 생성형 AI가 자동적으로 생성한 결과물은 현행 저작권법의 보호 대상이 아니다. 하지만 인간이 AI가 생성한 결과물에 창작적 표현을 추가했다면 그 기여 부분에 대해서는 저작권을 가질 수 있다.
다른 사람이 게시한 생성형 AI 콘텐츠를 재사용하면 저작권 위반에 해당하지 않는다. 생성형 AI 작성 콘텐츠에는 현행 저작권법상 저작권이 인정되지 않는다. 생성형 AI 개발사가 이용자들에게 산출물에 대한 모든 권리를 양도하고 상업적으로 판매, 이용할 수 있도록 하고 있더라도 AI 이용자가 산출물의 저작권을 취득한 것이 아니며 타인의 재사용을 금지할 수 있는 권리 또한 없다. 단, 생성형 AI가 학습한 원저작물에 대해서는 저작권 침해 문제가 제기될 수 있다. 따라서 생성형 AI를 활용해서 얻은 결과물이라는 출처 표기는 필수다.
생성형 AI를 활용해 유명인의 얼굴이 나오는 콘텐츠를 제작했는데 SNS에 업로드 시 초상권 문제가 발생할 수 있다. 생성형 AI 결과물이더라도 공인의 초상임을 알 수 있는 콘텐츠는 무단 게시가 불가능하다. 연예인이나 유명인뿐 아니라 국민이라면 누구나 그의 초상이 허락 없이 촬영, 묘사, 영리적으로 이용되는 것을 거부할 수 있다. 무단 이용자에 대해 손해배상 청구 및 게시 중단 청구가 가능하다.[31]
각주
- ↑ 〈챗GPT〉, 《위키백과》
- ↑ 공공지능정책과, 〈인공지능, 공공부문에서 똑똑하고 안전하게 활용〉, 《행정안전부》, 2023-05-08
- ↑ 3.0 3.1 KIAT 산업기술정책단 정책기획실, 〈<KIAT 애자일 2023년 제 1호> 챗GPT, 생성형 AI가 가져올 산업의 변화〉, 《한국산업기술진흥원》, 2023-03-06
- ↑ 박보경, 한성수, 〈챗 GPT 의 문제점과 한계에 대한 고찰〉, 《한국정보처리학회 춘계학술발표대회》, 2023-05-18
- ↑ 정한영 기자, 〈생성 AI 전쟁, 그 끝은 어딜까?...구글 '제미나이' 최대 100만 토큰 컨텍스트 창으로 무장한 차세대 모델 '제미나이 1.5 프로' 출시〉, 《인공지능신문》, 2024-02-16
- ↑ 김가은 기자, 〈구글 차세대 LLM '제미니'가 온다…연말 생성형 AI 경쟁 격화〉, 《이데일리》, 2023-09-18
- ↑ 〈Microsoft Copilot is now generally available〉, 《Microsoft Bing Blog》, 2023-12-02
- ↑ 황정수 기자, 〈"기업들이 생성형 AI 쓰면, 한국 잠재 생산역량 620조 증가"〉, 《한국경제》, 2023-08-28
- ↑ 유성무, 송태원, 이민정, 최윤주, 설순욱, 〈특허 데이터 기반 생성형 AI 기술 동향 분석〉, 《한국정보전자통신기술학회논문지》, 2024
- ↑ 박현진 기자, 〈생성 AI 시대, “보는데 3분, 만드는데 150분 역전될까”...웹툰에 스며드는 인공지능으로 제작환경 바꾼다〉, 《인공지능신문》, 2023-08-28
- ↑ 박설민 기자, 〈생성형 AI가 만든 새로운 ‘디지털 격차’에 대비하라〉, 《시사위크》, 2024-04-02
- ↑ 〈뤼튼이 모두에게 한도 없는 AI를 제공하는 이유〉, 《뤼튼커뮤니티》, 2023-11-19
- ↑ 염현주 기자, 〈<인터뷰> 뤼튼테크놀로지스 이세영 대표, 생성 AI 앱 ‘뤼튼’으로 글쓰기 고민↓〉, 《스타트업투데이》, 2023-03-08
- ↑ 박수형 기자, 〈이세영 뤼튼 "인터넷처럼...누구나 생성AI 쓰는 시대 온다"〉, 《지디넷코리아》, 2023-03-08
- ↑ 전미준 기자, 〈인기 끝내주는 눈달린 챗GPT 'AskUp' 카톡 챗봇... 3일만에 채널친구 3만명 돌파, 최적의 답 찾아 제공〉, 《인공지능신문》, 2023-03-09
- ↑ 〈AskUp 공식 사용 가이드 Vol. 2 - 기능 모음편〉, 《업스테이지》, 2023-08-16
- ↑ 〈AskUp(아숙업) 공식 사용 가이드 Vol. 1 - 친구 추가편〉, 《업스테이지》, 2023-03-20
- ↑ DesignerAllan, 〈AskUp(아숙업)에 대한 모든 것 : 사용법 및 활용 사례〉, 《티스토리》, 2023-04-06
- ↑ 〈최근 AI 인공지능의 10년 역사 – 10대 사건 중심으로〉, 《디지털인사이트매거진》, 2023-02-07
- ↑ cocoa, 〈(논문 리뷰) DALL-E 2 : Hierarchical Text-Conditional Image Generation with CLIP Latents〉, 《티스토리》, 2022-05-08
- ↑ 박하나, 〈이미지 생성 인공지능(AI) 달리(DALL·E)의 활용 사례 연구〉, 《단국대학교》, 2023-01-26
- ↑ insight.coco, 〈이미지 생성형 AI '달리2', '미드저니' UX 장단점 분석〉, 《요즘IT》, 2023-07-17
- ↑ 홀릭스 HOLIX, 〈생성형 AI로 디자인하기 / DALL-E, Midjourney를 활용한 디자인 스터디〉, 《네이버 블로그》, 2023-07-24
- ↑ 〈생성형 AI 실무적용을 위한 Midjourney 미드저니 성공전략 : 프롬프트엔지니어링의 이해와 적용〉, 《위디엑스》
- ↑ 25.0 25.1 James AI Explorer, 〈AI 논문 분석 : 생성형 AI 모델 종류 및 특징 정리〉, 《티스토리》, 2023-11-14
- ↑ 새우까앙, 〈<논문리뷰> Stable Diffusion(High-Resolution Image Synthesis with Latent Diffusion Models)〉, 《티스토리》, 2023-11-24
- ↑ Will Douglas Heaven, 〈스테이블 디퓨전 개발사, 새로운 영상 생성 AI 공개〉, 《MIT 테크놀로지 리뷰》, 2023-02-15
- ↑ 유현우, 〈<이슈리포트> 2023-4-미국 의회 조사국 「생성형 AI와 저작권법(Generative Artificial Intelligence and Copyright Law)」검토 보고서 발표(유현우)〉, 《웰콘》, 2023-11-08
- ↑ 유성무, 송태원, 이민정, 최윤주, 설순옥, 〈특허 데이터 기반 생성형 AI 기술 동향 분석〉, 《한국정보전자통신기술학회논문지》, 2024
- ↑ KOSEN-코센리포트, 〈생성형 AI 주요 이슈 및 동향 <5월 사전주제> 생성형 AI 주요 이슈 및 동향〉, 《사이언스온》, 2023-05-17
- ↑ 방송통신위원회, 〈생성형 AI가 만든 저작물 저작권은 누가 갖게 될까요?〉, 《대한민국 정책브리핑》, 2024-04-04
참고자료
같이 보기