3D 모델링
3D 모델링(3D modeling)은 가상의 3D 공간에 표현될 수 있는 수학적 모델을 만들어 가는 과정을 말한다. 모델링은 컴퓨터가 이해할 수 있는 형태의 데이터로 저장된다. 보통 객체는 3차원 공간에 수많은 선으로 표현되고, 렌더링(rendering) 과정을 거쳐 실제 물체와 비슷한 느낌이나 질감을 가지게 된다. [1]
목차
종류
솔리드웍스
솔리드웍스(SolidWorks)는 3D 모델링 프로그램 중 하나이며, 보통 오토데스크사에서 나오는 인벤터랑 무료 스케치업 등 여러 가지 프로그램이 있다. 쉬운 사용법, 폭넓은 산업분야(제품 디자인, 기구 설계, 전기 설계, 전자 등), 3D 디자인 설계에 우수하다. 솔리드웍스는 빠르고 편하게 아이디어의 구현이 가능한 3D 이다. 직관적인 설계가 가능하고, 기존 데이터를 다시 사용할 수 있고, 빠르게 2D 도면을 만드는 기능이 있는 혁신적인 커뮤니케이션 도구이다. 솔리드웍스를 이용하여 세상에 존재하는 거의 모든 제품 및 부품을 구상할 수 있다. 예를 들자면 일반 기계, 의료기계, 로봇, 파이츠, 금형, 자동차 부품 등이 있다. 솔리드웍스에는 3D 솔리드 모델링, 대규모 어셈블리 설계, 고급 곡면 처리, 판금, BOM 등 많은 기능들이 포함이 되어 있다. 또한 다른 3D 프로그램과 협업이 가능하다. 솔리드웍스는 제품 개발 프로세스의 모든 분야에 사용 가능한 통합 솔루션의 핵심 제품이다. 설계 검증, 데이터 관리 등 제한없는 확장성을 제공한다.
솔리드웍스는 효과적으로 기능을 평가하고, 품질을 개선하며, 제품 혁신을 촉진시킬 수 있는 제품이다. 설계 성능을 시뮬레이션 및 해석할 수 있고, 솔리드웍스의 가치에 따라 쉽고 빠르게 이용할 수 있다. 솔리드웍스 내에 완벽히 통합되어 사용할 수 있고, 주요 솔루션으로는 구조해석, 피로해석, 열 해석, 진동 해석, 최적화 설계 해석 등을 할 수 있다. 구조해석은 제품의 강도 및 강성 결정에 이용한다. 피로해석은 금속 피로로 인해 반복적인 무작위 하중 주기가 어떻게 구조적 파괴를 만들 수 있는지 확인할 수 있고, 열 해석은 부품 내부와 외부 사이에서 온도 및 열 전달을 계산한다. 진동해석은 고유 진동성 해석을 이용해 모든 지오메트리에 대해 고유 진동 모드를 결정한다. 최적화 설계 해석은 엔지니어가 자신이 한 설계에 대해 구조적 최적화 해석을 진행하여 무게, 고유진동수 또는 강성 성능에 대한 최상의 내구성에 도달할 수 있도록 지원한다. 솔리드웍스 시뮬레이션을 이용하면 설계자도 쉽게 시뮬레이션을 사용할 수 있고, 설계와 시뮬레이션을 동시에 진행할 수 있으며, 설계 변수를 이용하려 설계를 최적화 할 수 있다. 또한 모델 변경이 바로 시뮬레이션에 반응이 된다. [2]
카티아
카티아(Catia)는 Computer-Graphics Aided Three-Dimensional Interative Application의 약자이다. 사용자와 컴퓨터 사이의 의사소통이 가능하다 라는 뜻으로, 카티아 화면의 다이얼로그 윈도우 안에서 컴퓨터에 사용자가 내린 명령을 컴퓨터가 스크린으로 응답을 하며 진행하는 대화식 작업 방법이다. 제품의 모델을 설계부터 생산까지 전 과정을 제작, 수정, 관리할 수 있도록 하는 PLM(Product Lifecycle Management)을 구현하고, 지식을 기초로 한 설계 지식을 적용해 제품의 생산 기술의 기법들을 직접 제품에 사용이 가능한 최고의 CAD/CAM/CAE 통합 소프트웨어이다. 캐드 프로그램중 하나인 카티아는 오토캐드와 유사한 프로그램이지만, 오토캐드는 2D 도면에 특화되었다면, 카티아는 3D 도면에 특화된 프로그램이다. 카티아는 프랑스 다쏘 사에서 항공기를 만들기 위해 3D 전용으로 제작된 캐드 프로그램이며, 한국에서는 자동차를 제작할 때 많이 사용된다고 한다. [3]
라이노
라이노(Rhino)는 자체적으로 개발한 3D 모델링 커널에 넙스(NURBS) 기반의 서피스 툴 위주로 지원하고 있다. 고급 3D 디자인에 필요한 기능을 충붆히 구현하지 못하고 있어 산만한 서피스 툴 위주로만 지원하고 있는것이다. 넙스란 한마디로 컴퓨터 그래픽스 분야에서 커브(curve)나 서피스(surface)를 수학적으로 표현해내기위해 1970년대 초에 이론체계가 짜여진 오래된 방법이다. 넙스는 서브디비전 방식의 툴에 비해 자유곡면을 만드는 난이도가 높다. 엔터프라이즈용 M-캐드를 비롯하여 대부분의 3D 캐드들이 넙스방식의 서피스 디자인 툴에 더해 직관적 디자인을 할 수 있는 서브디비전 방식의 서피스 디자인 툴도 모듈/애드인 형태로 제공되고 있다.
UI가 아직까지도 콘솔창을 통한 텍스트 다이얼로그 방식이며, 윈도우 프레임도 윈폼을 사용하는 듯 하다. 비정형 모델링을 위해서는 버젼 7의 서브디비전이 쓰이고 있다. 블렌더의 사이클라는 렌더 엔진으로 맥스웰, 브이레이, 키샷등 별도의 렌더 플러그인 없이도 금속, 플라스틱, 유리, 거친 표면 등을 물리적으로 구현하며 이미지를 뽑아내는 것이 가능하다. 그리고 그래스호퍼도 내장되어서 알고리즘 기반 모델링이 가능하다고 한다. 여기에서는 노드 단위로 데이터가 움직이며 벡터그래픽을 불러와서 작업할수 있다. 3D 프린팅과 호환성이 좋다. 3D 프린팅의 한계치대 유격과 크기를 적용시키면 출력할 수 있다. 요즘은 3D 프린팅만을 위한 포스트 툴들도 생각보다 많다. 블렌더의 사이클 렌더를 내부에 포함하고 있지만 사용도는 낮다. 사용의 용이성에 대한 개발이 부족해보인다. 라이노 렌더러 로는 브이레이, 키샷, 루미온 등 별도의 렌더 플러그인을 많이 쓴다.
그래스호퍼는 알고리즘 기반의 프로그램으로 라이노6부터 설치시 내부에 포함되어있어 별도의 설치없이 사용가능하다. 알고리즘을 사용해 라이노 상에 모델링을 제작할 수 있다. 덕분에 길이나 높이 등의 수치를 바꾸면서 즉각적으로 모델링의 변화를 볼 수 있다. 비정형개체의 일정한 간격의 구조물을 사용한다거나 하는 어려운 작업도 알고리즘을 짜서 쉽게 해결이 가능하다. 다만 알고리즘을 짜는 과정이 상당히 어려운 편이다. 그래서 그래스호퍼에 이용자들이 만든 알고리즘을 받아서 사용이 가능하다. 푸드포라이노 사이트에 가면 다양한 알고리즘을 받을 수 있다. 마찬가지로 알고리즘을 모아서 만든 그래스호퍼안의 플러그인도 많이 이용된다. 런치박스와 캥거루가 대표적이다. [4]
인벤터
스케치업
지브러시
블렌더
3D맥스
마야
각주
- ↑ 훤히 보이는 3D 기술, 〈컴퓨터 그래픽과 3D 모델링〉, 《네이버 지식백과》, 2010-12-30
- ↑ 대형 3D 프린터, 〈솔리드웍스란 무엇인가?〉, 《네이버 블로그》, 2019-03-21
- ↑ 카티아, 〈카티아(CATIA)는 어떤 뜻이고, 어떤 프로그램일까〉, 《네이버 블로그》, 2016-02-24
- ↑ 〈Rhino〉, 《나무위키》