|
|
(사용자 2명의 중간 판 7개는 보이지 않습니다) |
1번째 줄: |
1번째 줄: |
− | [[파일:고정자.png|썸네일|300픽셀|'''고정자'''(Stator)]] | + | [[파일:고정자.png|썸네일|250픽셀|'''고정자'''(stator)]] |
− | '''고정자'''(固定子)는 [[발전기]] 또는 [[전동기]]에서 고정되어 있는 부분을 가리킨다. | + | |
| + | '''고정자'''(固定子)는 [[발전기]] 또는 [[전동기]]에서 고정되어 있는 부분을 가리킨다. 영어로 '''스테이터'''(stator)라고 부른다. 반대말은 [[회전자]](回轉子)이다. |
| | | |
| == 개요 == | | == 개요 == |
− | 고정자는 회전자(回轉子) 주위에 고정시킴으로써 회전자계를 형성하며, 유도전류를 형성할 때 유도자기장의 변화를 받는 부분, 즉 멈추어 있는 부분을 생각하면 이해하기 쉬우며 기전력을 높이기 위해서 고정자 철심에 권선을 감아두어 코일을 형성하는 경우가 대부분이다. 공학 용어로는 고정자 철심과 권선, 지지하는 프레임 등을 통칭하기도 한다.<ref> 〈[https://www.scienceall.com/%ea%b3%a0%ec%a0%95%ec%9e%90stator-%e5%9b%ba%e5%ae%9a%e5%ad%90-2/?term_slug= 고정자]〉, 《사이언스올》, 2016-07-21 </ref> 외부에서 전기를 받아 역학적 [[일]](work)을 하는 전동기, 그리고 역학적 일을 받아 전기를 생산하는 발전기에서의 역학적 운동은 대부분 [[회전운동]]이다. 따라서 이 장치들에서는 회전하는 부분과 고정된 부분이 필연적으로 존재하는데, 회전하는 부분을 [[회전자]], 고정된 부분을 고정자라고 한다. 전동기나 역학적 발전기는 [[자기력]]을 이용하기 때문에, [[자기장]]을 제공하는 [[자석]]과 [[전자]]가 자유롭게 이동할 수 있는 도체판 또는 [[도선]]이 필수적이다. 전동기나 발전기의 세부 방식에 따라 자석이 회전자, 도선이 고정자가 되기도 하고, 반대로 자석이 고정자, 도선이 회전자가 되기도 한다.<ref name="고정자"> 〈[https://terms.naver.com/entry.naver?docId=5741665&cid=60217&categoryId=60217 고정자]〉, 《네이버 지식백과》</ref> | + | 고정자는 [[회전자]] 주위에 고정함으로써 회전자계를 형성하며, [[유도전류]]를 형성할 때 유도 자기장의 변화를 받는 부분, 즉 멈추어 있는 부분이다. 기전력을 높이기 위해서 고정자 철심에 권선을 감아두어 [[코일]]을 형성하는 경우가 대부분이다. 공학 용어로는 고정자 철심과 권선, 지지하는 프레임 등을 통칭하기도 한다.<ref> 〈[https://www.scienceall.com/%ea%b3%a0%ec%a0%95%ec%9e%90stator-%e5%9b%ba%e5%ae%9a%e5%ad%90-2/?term_slug= 고정자]〉, 《사이언스올》, 2016-07-21 </ref> 외부에서 전기를 받아 역학적 [[일]](work)을 하는 전동기, 그리고 역학적 일을 받아 전기를 생산하는 발전기에서의 역학적 운동은 대부분 [[회전운동]]이다. 따라서 이 장치들에서는 회전하는 부분과 고정된 부분이 필연적으로 존재하는데, 회전하는 부분을 [[회전자]], 고정된 부분을 고정자라고 한다. 전동기나 역학적 발전기는 [[자기력]]을 이용하기 때문에, [[자기장]]을 제공하는 [[자석]]과 [[전자]]가 자유롭게 이동할 수 있는 도체판 또는 [[도선]]이 필수적이다. 전동기나 발전기의 세부 방식에 따라 자석이 회전자, 도선이 고정자가 되기도 하고, 반대로 자석이 고정자, 도선이 회전자가 되기도 한다.<ref name="고정자"> 〈[https://terms.naver.com/entry.naver?docId=5741665&cid=60217&categoryId=60217 고정자]〉, 《네이버 지식백과》</ref> |
| | | |
| == 전동기에서 고정자의 예 == | | == 전동기에서 고정자의 예 == |
− | [[파일:교류전동기의 개략도.jpg|썸네일|300픽셀|전동기에서 고정자의 예]] | + | [[파일:교류전동기의 개략도.jpg|썸네일|300픽셀|'''교류전동기의 개략도''']] |
− | 오른쪽 그림은 교류전동기의 개략도를 나타냈다. 자석 또는 전자석이 내는 자기장 하에, 석쇠 모양으로 감긴 고리 혹은 코일이 자기장 방향에 수직 방향을 회전축으로 회전한다. 외부기전력에 의해 코일에 전류가 흐르면, 코일 안의 자유전자가 로런츠힘을 받아 코일을 돌리게 된다. 이 돌림힘에 의해 전동기가 일을 하게 된다. 코일이 회전하더라도 외부 회로와 전기적으로 연결되도록, 코일의 양 끝이 각각 서로 다른 미끄럼고리(slip ring)에 닿아 있다. 이 경우, 자석이 고정자, 도선이 회전자이다. 실제 교류전동기에서는, 회전자가 장치의 안쪽에 있고, 고정자가 바깥쪽에 있기 마련인데, 자석이 안쪽에 있어 회전자이며 코일은 바깥쪽에 있어 고정자인 형태도 있고, 반대로 코일이 안쪽에 있어 회전자, 자석이 바깥쪽에 있어 고정자인 형태도 있다. 코일에 흐르는 교류로는 단상교류 또는 삼상교류를 쓴다. 그리고 자석은 영구자석 또는 [[전자석]]이다.<ref name="고정자"></ref>
| + | |
| + | 자석 또는 전자석이 내는 자기장 하에, 석쇠 모양으로 감긴 고리 혹은 코일이 자기장 방향에 수직 방향을 회전축으로 회전한다. 외부기전력에 의해 코일에 전류가 흐르면, 코일 안의 자유전자가 로런츠힘을 받아 코일을 돌리게 된다. 이 돌림힘에 의해 전동기가 일하게 된다. 코일이 회전하더라도 외부 회로와 전기적으로 연결되도록, 코일의 양 끝이 각각 서로 다른 미끄럼고리(slip ring)에 닿아 있다. 이 경우, 자석이 고정자, 도선이 회전자이다. 실제 교류전동기에서는, 회전자가 장치의 안쪽에 있고, 고정자가 바깥쪽에 있기 마련인데, 자석이 안쪽에 있어 회전자이며 코일은 바깥쪽에 있어 고정자인 형태도 있고, 반대로 코일이 안쪽에 있어 회전자, 자석이 바깥쪽에 있어 고정자인 형태도 있다. 코일에 흐르는 교류로는 단상교류 또는 삼상교류를 쓴다. 그리고 자석은 영구자석 또는 [[전자석]]이다.<ref name="고정자"></ref> |
| | | |
| == 발전기에서 고정자의 예 == | | == 발전기에서 고정자의 예 == |
− | [[파일:발전기의 모식도.jpg|썸네일|300픽셀|발전기에서 고정자의 예]] | + | [[파일:발전기의 모식도.jpg|썸네일|300픽셀|'''교류발전기의 작동 원리''']] |
− | 오른쪽 그림은 교류발전기의 작동원리를 보여준다. 석쇠 모양으로 감긴 코일 또는 도선의 양 끝이 회전하더라도 항상 외부 회로와 연결되도록, 양 끝이 고리 모양의 두 개의 미끄럼 고리(slip ring)에 닿아 있다. 자석 혹은 전자석의 N극으로부터 S극 방향으로 자기장이 형성되어 있고, 그 사이에 외부 힘에 의해 회전할 수 있는 코일 그 자기장 하에 있다. 코일이 외부 돌림힘에 의해 강제 원운동을 하면, 코일 내 자유전자는 코일의 회전 방향을 따라 전류를 형성한다. 자기장 안에 있는 전류가 받는 로런츠힘은 자기장과 전류에 수직인 방향, 즉 코일의 양 끝 방향으로 작용하여 결과적으로 a와 b단자 사이에 [[기전력]]을 만든다. 원판의 회전 방향이 바뀌면 기전력의 부호만 바뀔 뿐 나머지 물리적 상황은 같다. 따라서, 원판의 회전축과 가장자리에 전선을 연결하면 이 장치는 교류발전기로서 작동하게 된다. 이 경우, 코일이 회전자, 자석이 고정자이다. 그림에서는 자석이 고정자이고, 코일이 회전자인 교류발전기의 예를 보여주었지만, 이 경우 일반적으로 양 끝과 미끄럼 고리 사이의 마찰이 불가피하며 배선이 복잡하다. 그런 이유로 고전압의 발전기에서는 반대로 도체 코일이 바깥쪽에 고정되어 있고 영구자석 또는 전자석이 안쪽에서 회전하는 방식을 택한다. 고정자인 코일의 쌍을 120도 간격으로 배열하면, 세 쌍의 기전력을 동시에 얻을 수 있는데 이로부터 얻는 전기는 삼상교류가 된다. 고압용 교류발전기나 교류전동기에서는 단상교류보다는 삼상교류의 전기가 일반적인데, 가정용 기기와 같은 저전력 설비를 위한 단상교류를 삼상교류 전원으로부터 쉽게 추출해 낼 수 있다.<ref name="고정자"></ref>
| |
| | | |
| + | 석쇠 모양으로 감긴 코일 또는 도선의 양 끝이 회전하더라도 항상 외부 회로와 연결되도록, 양 끝이 고리 모양의 두 개의 미끄럼 고리(slip ring)에 닿아 있다. 자석 혹은 전자석의 N극으로부터 S극 방향으로 자기장이 형성되어 있고, 그 사이에 외부 힘으로 회전할 수 있는 코일 그 자기장 하에 있다. 코일이 외부 돌림힘에 의해 강제 원운동을 하면, 코일 내 자유전자는 코일의 회전 방향을 따라 전류를 형성한다. 자기장 안에 있는 전류가 받는 로런츠힘은 자기장과 전류에 수직인 방향, 즉 코일의 양 끝 방향으로 작용하여 결과적으로 a와 b 단자 사이에 [[기전력]]을 만든다. 원판의 회전 방향이 바뀌면 기전력의 부호만 바뀔 뿐 나머지 물리적 상황은 같다. 따라서, 원판의 회전축과 가장자리에 전선을 연결하면 이 장치는 교류발전기로서 작동하게 된다. 이 경우, 코일이 회전자, 자석이 고정자이다. 그림에서는 자석이 고정자이고, 코일이 회전자인 교류발전기의 예를 보여주었지만, 이 경우 일반적으로 양 끝과 미끄럼 고리 사이의 마찰이 불가피하며 배선이 복잡하다. 그런 이유로 고전압의 발전기에서는 반대로 도체 코일이 바깥쪽에 고정되어 있고 영구자석 또는 전자석이 안쪽에서 회전하는 방식을 택한다. 고정자인 코일의 쌍을 120도 간격으로 배열하면, 세 쌍의 기전력을 동시에 얻을 수 있는데 이로부터 얻는 전기는 삼상교류가 된다. 고압용 교류발전기나 교류전동기에서는 단상교류보다는 삼상교류의 전기가 일반적인데, 가정용 기기와 같은 저전력 설비를 위한 단상교류를 삼상교류 전원으로부터 쉽게 추출할 수 있다.<ref name="고정자"></ref> |
| | | |
| {{각주}} | | {{각주}} |
| | | |
| ==참고자료== | | ==참고자료== |
− | * | + | * 〈[https://www.scienceall.com/%ea%b3%a0%ec%a0%95%ec%9e%90stator-%e5%9b%ba%e5%ae%9a%e5%ad%90-2/?term_slug= 고정자]〉, 《사이언스올》, 2016-07-21 |
| + | * 〈[https://terms.naver.com/entry.naver?docId=5741665&cid=60217&categoryId=60217 고정자]〉, 《네이버 지식백과》 |
| | | |
| ==같이 보기== | | ==같이 보기== |
28번째 줄: |
31번째 줄: |
| * [[유도모터]] | | * [[유도모터]] |
| * [[동기모터]] | | * [[동기모터]] |
| + | |
| + | {{자동차 부품|검토 필요}} |
고정자(固定子)는 발전기 또는 전동기에서 고정되어 있는 부분을 가리킨다. 영어로 스테이터(stator)라고 부른다. 반대말은 회전자(回轉子)이다.
고정자는 회전자 주위에 고정함으로써 회전자계를 형성하며, 유도전류를 형성할 때 유도 자기장의 변화를 받는 부분, 즉 멈추어 있는 부분이다. 기전력을 높이기 위해서 고정자 철심에 권선을 감아두어 코일을 형성하는 경우가 대부분이다. 공학 용어로는 고정자 철심과 권선, 지지하는 프레임 등을 통칭하기도 한다.[1] 외부에서 전기를 받아 역학적 일(work)을 하는 전동기, 그리고 역학적 일을 받아 전기를 생산하는 발전기에서의 역학적 운동은 대부분 회전운동이다. 따라서 이 장치들에서는 회전하는 부분과 고정된 부분이 필연적으로 존재하는데, 회전하는 부분을 회전자, 고정된 부분을 고정자라고 한다. 전동기나 역학적 발전기는 자기력을 이용하기 때문에, 자기장을 제공하는 자석과 전자가 자유롭게 이동할 수 있는 도체판 또는 도선이 필수적이다. 전동기나 발전기의 세부 방식에 따라 자석이 회전자, 도선이 고정자가 되기도 하고, 반대로 자석이 고정자, 도선이 회전자가 되기도 한다.[2]
전동기에서 고정자의 예[편집]
자석 또는 전자석이 내는 자기장 하에, 석쇠 모양으로 감긴 고리 혹은 코일이 자기장 방향에 수직 방향을 회전축으로 회전한다. 외부기전력에 의해 코일에 전류가 흐르면, 코일 안의 자유전자가 로런츠힘을 받아 코일을 돌리게 된다. 이 돌림힘에 의해 전동기가 일하게 된다. 코일이 회전하더라도 외부 회로와 전기적으로 연결되도록, 코일의 양 끝이 각각 서로 다른 미끄럼고리(slip ring)에 닿아 있다. 이 경우, 자석이 고정자, 도선이 회전자이다. 실제 교류전동기에서는, 회전자가 장치의 안쪽에 있고, 고정자가 바깥쪽에 있기 마련인데, 자석이 안쪽에 있어 회전자이며 코일은 바깥쪽에 있어 고정자인 형태도 있고, 반대로 코일이 안쪽에 있어 회전자, 자석이 바깥쪽에 있어 고정자인 형태도 있다. 코일에 흐르는 교류로는 단상교류 또는 삼상교류를 쓴다. 그리고 자석은 영구자석 또는 전자석이다.[2]
발전기에서 고정자의 예[편집]
석쇠 모양으로 감긴 코일 또는 도선의 양 끝이 회전하더라도 항상 외부 회로와 연결되도록, 양 끝이 고리 모양의 두 개의 미끄럼 고리(slip ring)에 닿아 있다. 자석 혹은 전자석의 N극으로부터 S극 방향으로 자기장이 형성되어 있고, 그 사이에 외부 힘으로 회전할 수 있는 코일 그 자기장 하에 있다. 코일이 외부 돌림힘에 의해 강제 원운동을 하면, 코일 내 자유전자는 코일의 회전 방향을 따라 전류를 형성한다. 자기장 안에 있는 전류가 받는 로런츠힘은 자기장과 전류에 수직인 방향, 즉 코일의 양 끝 방향으로 작용하여 결과적으로 a와 b 단자 사이에 기전력을 만든다. 원판의 회전 방향이 바뀌면 기전력의 부호만 바뀔 뿐 나머지 물리적 상황은 같다. 따라서, 원판의 회전축과 가장자리에 전선을 연결하면 이 장치는 교류발전기로서 작동하게 된다. 이 경우, 코일이 회전자, 자석이 고정자이다. 그림에서는 자석이 고정자이고, 코일이 회전자인 교류발전기의 예를 보여주었지만, 이 경우 일반적으로 양 끝과 미끄럼 고리 사이의 마찰이 불가피하며 배선이 복잡하다. 그런 이유로 고전압의 발전기에서는 반대로 도체 코일이 바깥쪽에 고정되어 있고 영구자석 또는 전자석이 안쪽에서 회전하는 방식을 택한다. 고정자인 코일의 쌍을 120도 간격으로 배열하면, 세 쌍의 기전력을 동시에 얻을 수 있는데 이로부터 얻는 전기는 삼상교류가 된다. 고압용 교류발전기나 교류전동기에서는 단상교류보다는 삼상교류의 전기가 일반적인데, 가정용 기기와 같은 저전력 설비를 위한 단상교류를 삼상교류 전원으로부터 쉽게 추출할 수 있다.[2]
참고자료[편집]
- 〈고정자〉, 《사이언스올》, 2016-07-21
- 〈고정자〉, 《네이버 지식백과》
같이 보기[편집]
이 고정자 문서는 자동차 부품에 관한 글로서 검토가 필요합니다. 위키 문서는 누구든지 자유롭게 편집할 수 있습니다. [편집]을 눌러 문서 내용을 검토·수정해 주세요.
|
자동차 : 자동차 분류, 자동차 회사, 한국 자동차, 독일 자동차, 유럽 자동차, 미국 자동차, 중국 자동차, 일본 자동차, 전기자동차, 자동차 제조, 자동차 부품 □■⊕, 자동차 색상, 자동차 외장, 자동차 내장, 자동차 전장, 자동차 부품 회사, 배터리, 배터리 회사, 충전, 자동차 판매, 자동차 판매 회사, 자동차 관리, 자동차 역사, 자동차 인물
|
|
자동차 부품
|
계기 • 레저보어(리저버) • 레저보어 탱크(리저버 탱크) • 보조장치 • 부품 • 비순정부품 • 소모품 • 순정부품 • 스프링 • 아세이(어셈블리) • 옵션 • 운전장치 • 자동차 부품 • 정품 • 케이블 • 튜닝 • 파이프 • 햅틱 • 호몰로게이션
|
|
차대(섀시)
|
3 in 1 • VIN • 강선 • 강판 • 공차 (오차) • 공차 (자동차) • 공차중량 • 단차 • 드레인홀 • 롤링섀시 • 모노코크 • 바디 • 바디온프레임 • 배분중량 • 보일러 • 섀시 • 소자 • 에어백 모듈 • 연결모듈 • 오일 • 오일팬 • 워터펌프(냉각수 펌프) • 인버터 • 인클로저 • 중량 • 차대(섀시) • 차대번호 • 차량 총중량(GVW) • 철판 • 촉매장치 • 충전기 • 캐빈룸 • 캡오버 • 컨버터 • 크러시존(크럼플존) • 프레임 • 프로펠러 • 플러그 • 히트펌프
|
|
엔진
|
2기통 • 4기통 • 5기통 • 6기통 • 7기통 • 8기통 • 10기통 • 12기통 • 16기통 • 18기통 • 20기통 • LPDI엔진 • LPG엔진 • LPI엔진 • OHV • PS • rpm • V형엔진 • 가솔린엔진 • 가스터빈 • 공랭식 엔진 • 기화기 • 내연기관 • 냉각수 • 냉각장치 • 냉각제 • 냉각팬 • 냉간상태 • 노즐 • 다기통 • 디젤엔진 • 라디에이터 • 마력 • 배기밸브 • 밸브 • 봄베 • 부동액 • 분사 • 석유엔진 • 선박 엔진 • 수랭식 엔진 • 수소탱크 • 수소터빈 • 수평대향 엔진 • 슈퍼차저 엔진 • 스로틀바디 • 스로틀밸브 • 실린더 • 싱글터보 • 양자엔진 • 엔진 • 엔진룸 • 엔진마운트 • 엔진오일 • 엔진제어장치 • 연료분사기 • 연료시스템 • 연료전지 • 연료주입구 • 연료탱크 • 연료파이프 • 연료펌프 • 연료필터 • 열기관(열원동기) • 왕복기관 • 외연기관 • 원동기 • 원자력기관 • 원형봄베 • 자동차 엔진 • 자연흡기엔진 • 점화케이블 • 점화플러그 • 제트엔진 • 증기기관 • 증기터빈 • 직렬엔진 • 최고출력 • 최대토크 • 캠 • 캠축(캠샤프트) • 커넥팅로드(연결봉) • 크랭크 • 크랭크축 • 탱크 • 터보랙 • 터보엔진 • 터보차저 • 터빈 • 토크 • 트윈터보 • 파워팩 • 플라이휠 • 피스톤 • 피스톤 엔진 • 항공기 엔진 • 흡입밸브
|
|
모터
|
고정자(스테이터) • 교류모터 • 교류발전기 • 구동모터 • 구동모터 최대출력 • 동기모터 • 듀얼모터 • 모터 • 모터룸 • 발전기 • 시동모터 • 싱글모터 • 용단 • 유도모터 • 인휠모터 • 인휠시스템 • 인휠헥사모터 • 직류모터 • 직류발전기 • 축전지 • 코일 • 토크컨버터 • 트라이모터(트리플모터) • 퓨즈 • 퓨즈박스 • 퓨즈풀러 • 필라멘트 • 회전자(로터) • 회전축
|
|
구동장치
|
4매틱 • AWD 디스커넥터 • B-ISG • HTRAC • IGBT • PE모듈 • TCU • xDrive • 가변축 • 가속기 • 가속기 (자동차) • 감속기 • 공회전 속도조절 장치 • 공회전 제한 장치(ISG) • 구동 • 구동벨트 • 구동장치 • 구동축 • 기어(톱니바퀴) • 기어박스 • 기어비 • 기어오일 • 다운시프트 • 동력전달장치 • 뒷차축(리어액슬) • 듀얼클러치 • 무단변속기 • 미션 • 미션오일 • 배전기 • 벨트 • 변속기 • 사륜구동 • 앞차축(프런트액슬) • 업시프트 • 이륜구동 • 전륜구동 • 전축 • 종감속기어 • 차동기어(디퍼런셜) • 차동장치 • 차축(액슬) • 추진축 • 축 • 클러치 • 타이밍벨트 • 파워트레인 • 프로펠러 샤프트 • 후륜구동 • 후축
|
|
조향장치
|
경사각 • 너클암 • 너클 조인트 • 로어암 • 사륜조향 • 스러스트 • 스러스트 각 • 스티어링(조향장치) • 스티어링너클(너클) • 스티어링박스 • 스티어링 샤프트 • 스티어링암 • 어퍼마운트 • 어퍼암 • 전경각 • 전륜조향 • 조향축 • 캐스터 • 캠버 • 캠버각 • 킹핀 • 킹핀 경사각 • 킹핀 오프셋 • 토우 • 후경각 • 후륜조향 • 휠 밸런스 • 휠 얼라인먼트
|
|
제동장치
|
ABS • EBD • HHC • 경사로 밀림 방지 • 드럼브레이크 • 디스크 브레이크(디스크 로터) • 미끄럼 방지장치 • 베이퍼로크 • 보조제동장치(BA) • 브레이크드럼 • 브레이크라이닝 • 브레이크슈 • 브레이크 어시스트 시스템 • 브레이크오일 • 브레이크패드 • 슈팅 브레이크 • 오버라이드 • 오토홀드 • 전자식 제동력 분배(EBD) • 제동장치(브레이크) • 캘리퍼 • 클램프 • 클램핑력(클램프력) • 트랙션 컨트롤 시스템(구동력 제어장치)
|
|
서스펜션
|
가변댐퍼 • 고무부싱(러버부싱) • 기계식 서스펜션 • 댐퍼(제진기) • 더블위시본 서스펜션 • 마운트 • 매직 바디 컨트롤 • 부싱 • 서스펜션(현가장치) • 서스펜션암(컨트롤암) • 쇼크업소버 • 스트럿 서스펜션 • 액티브 서스펜션 • 에어매틱 • 에어서스펜션 • 에어스프링 • 전자제어 서스펜션 • 주파수 감응형 댐퍼 • 코일스프링 • 판스프링 • 플레이너 시스템 • 하시라 • 하이드로 부싱 • 현가상질량 • 현가하질량
|
|
흡배기장치
|
매연저감장치 • 배기 • 배기음 • 배기장치 • 배출 • 에어덕트 • 흡기 • 흡기장치 • 흡배기 • 흡배기장치 • 흡입
|
|
위키 : 자동차, 교통, 지역, 지도, 산업, 기업, 단체, 업무, 생활, 쇼핑, 블록체인, 암호화폐, 인공지능, 개발, 인물, 행사, 일반
|
|