|
|
67번째 줄: |
67번째 줄: |
| | | |
| ==단점== | | ==단점== |
− | 디젤 엔진의 | + | 디젤 엔진의 가장 큰 단점은 진동과 소음인데, 진동이 심한이유는 배기가스를 연소시키는 과정에서 미세먼지 등을 완전히 연소 시켜야하고 |
− | 디젤이 진동이 심한 이유 중 하나는 배기가스 중 미세먼지를 줄이기 위해선 연료를 완전 연소 시켜야 하고, 압축착화를 위해서 높은 연소실 온도를 만들어줘야 하는데, 그걸 충족시키기 위하여 압축비를 가솔린에 비해 높게 쓰기 때문이다. 가솔린 엔진은 높은 편이 11:1이지만 승용형 디젤은 기본적으로 14:1 이상이다. 거기에 디젤엔진은 열효율과 내구성을 위해 철로 만든 피스톤을 쓰기 때문에 더하다.[13] 이 단점은 항공기에서 디젤 엔진을 잘 안쓰는 이유 중 1순위이다. 또한 안락함을 강조하는 고급 차량일수록 이 진동 문제 때문에 디젤 엔진을 덜 쓴다. 물론 6기통 이상으로 넘어가면 디젤 엔진도 진동이 상당히 줄어들긴 하나, 상위 등급으로 올라갈 수록 제한적이긴 하다. | + | 디젤이 진동이 심한 이유 중 하나는 배기가스 중 미세먼지를 줄이기 위해선 연료를 완전 연소 시켜야 하고,공기만을 실린더 안에 흡입한다. 공기를 고온,고압으로 압축해야 하기 때문에 연소실 온도를 높게 해줘야 한다 이때문에 압축비를 20분의 1의 비율로 압축을 해야하는데 10분의 일로 압축을 하는 가솔린 엔진보다 압축률이 더 높다 압축률이 높은데 다가 디젤 엔진은 열 효율과 내구성을 위해 철로 만든 피스톤을 쓰기 때문에 진동이 더 심해지는 이유이다. 이때문에 항공기에서는 디젤 엔진을 잘 쓰지 않는다고 한다. 그리고 소음 발생 시키지 않는 차량들은 진동 문제 때문에 디젤 엔진을 잘 쓰지 않는다. |
− | 무거운 중량과 그에 따르는 단점들: 동배기량의 가솔린 엔진 대비 토크가 6~70% 더 강하기 때문에 전반적으로 강도 높은 부품들이 적용되면서 전반적으로 엔진이 더 크고 무거워진다.[14]
| |
− | 엔진룸 크기의 제약과 무게 배분의 문제 또한 존재한다. 즉 2.4리터 직렬 4기통 가솔린 엔진까지 수용할 수 있는 엔진룸에 디젤엔진을 넣으면 1.6리터 직렬 4기통까지밖에 안 들어가는 상황이 벌어질 수도 있다. 또한 디젤 엔진의 특성상 복잡한 연료계통과 많은 엔진오일, 고강도의 엔진 블럭과 헤드, 기본장착되는 터보차저로 인해 훨씬 무겁다. 그래서 무게중심도 위로 올라가고, 엔진이 장착된 쪽이 심각하게 무거워지므로 전체적으로 차의 차체 밸런스가 깨지고 운동성능이 떨어진다.
| |
− | 환경 오염: 가솔린 엔진에 비해 배출 가스가 환경에 미치는 악영향이 매우 크다. 청정 연료인 CNG 자동차나 LPG 자동차와는 비교 불가한 수준이다. 디젤 엔진의 경우 크게 두 가지 경로에 의해 오염원이 생성되는데 첫 번째로 매연, 즉 미세먼지의 경우 인젝터에서 분사되는 미세 연료방울들의 크기가 너무 크게 튀어나오면서 빠르게 연소되지 못하고 탄소상 입자로 배기로 배출되면서 매연이 된다. 두 번째는 과급 분위기에서 작동되면서 질소와 산소가 과도하게 공급되면서 실린더 내의 고온에서 서로 반응하면서 대량의 NOx가 형성된다는 점이다. 가솔린 엔진의 경우 첫 번째 문제는 엔진특성으로 인해 거의 발생하지 않고 두 번째 문제는 최적공연비 제어와 삼원촉매장치의 조합으로 인해 거의 해결된 문제이지만 디젤엔진의 경우에는 연료분사방식과 과급이라는 근본적인 특징으로 인해 해결이 쉽지 않은 문제들이다. 결국 이를 위해 커먼레일이 고압화되고 분사노즐이 정교하게 미세화되면서 단가상승 요인으로 작용하고, EGR 등을 통해 실린더 내 온도와 공기 중 과도한 산소량을 조정하면서 NOx 발생을 억제함과 동시에 매연을 재연소 시키고, 그러고도 처리하지 못하는 매연과 NOx는 DPF+LNT+SCR 등의 후처리 기술을 통해 해결해야만 한다. 이는 또 전술한 비싼 가격과 직결된다. 이러한 문제점들을 완전히 해소하지 못한 나머지 디젤게이트라는 희대의 조작 사건으로 이어진다. 상기 서술했듯 이미 생산된 차량이라도 유지관리를 아주 철저히 해야 하는데, 플런저 타입의 구형 디젤엔진도 정비를 철저히 하여 KD-147부하검사모드[15]로도 매연 농도 퍼센티지가 한 자릿수[16]로 찍히도록 하는게 가능하기는 하지만, 반대로 최신 차량이라 한들 정비를 조금이라도 부실하게 할 경우 검사 기준치의 몇 배나 되는 매연 농도가 측정되어 불합 판정을 받기 십상이다. 보시다시피 유로4 이 후 부터는 디젤차량은 DPF를 기초로 온갖 후처리 장치를 장착하여 기준을 맞추고 있는데, 바꿔서 말하자면 그 후처리 장치의 기능이 마비될 경우에는 오염 배출량이 사실상 유로3 이하의 5등급 경유차와 다르지 않은 수준이 되기 때문이다.
| |
− | 스포츠성과 뒤떨어진 특성: 관성모멘트가 크고 터보랙 등의 문제로 인해 엔진 반응 속도가 중시되는 영역에서는 사용이 제한된다. 그런 이유로 경주용 차량에 거의 쓰이지 않는다. 촌각을 다투는 레이스에서는 엔진의 반응 속도가 생명이기 때문. 다만 2007년 르망24시 레이스에서 아우디가 R10 디젤 경주차를 출전시켜 우승했으며 그 후로 2009년을 제외한 2014년 현재까지 R15과 R18의 디젤 경주차를 출전시켜 승리를 거머쥐었다. 이 경우 르망24시라는 레이스가 장시간 주행을 해야 하는 고로 가솔린보다 효율적인 연비와 이를 통한 적은 주유횟수, 내구성이 장점으로 작용하였기 때문. 하지만 주최 측의 디젤엔진에 대한 규제를 매해 강력하게 규제했기 때문에 그 의미가 퇴색되기 시작했다. 참고로 2009년의 우승 차량도 푸조의 908HDi 디젤 경주차였다. 미션에 대한 부담감이 크지만 120kgf•m가 넘는 막강한 토크가 코너 탈출 시 치고 나가는 데 압도적인 위력을 보였다.
| |
− | 높은 연료 민감도: 커먼레일로 넘어가면서 생긴 문제. 전용의 인젝터를 사용하는 가솔린 GDI 엔진 엔진과 비교해보면 고무로 된 호스와 300bar 정도의 인젝터로도 충분하지만, 디젤은 강철 배관으로 이루어진 커먼레일과 2000bar 수준의 초정밀한 인젝터를 요구한다. 그래서 어떠한 불순물도 들어가면 X된다. 옛날 플런저 방식 디젤엔진은 오래된 경유를 넣어도 별 탈이 없었고 심지어는 등유와 섞거나 폐식용유로 개인이 만드는 대체연료로도 구동이 가능했으나,[17] 현대의 CRDi와 DPF 등이 조합된 디젤엔진은 연료의 점도나 수분, 황 등의 불순물에 민감하기 때문에 연료를 가리지 않는다는 신화는 더 이상 통하지 않는다. 만약에 CRDi 디젤 엔진에 오래된 경유나 등유, 폐식용유 같은 것을 넣게 된다면? 엔진은 작살이 나게 돼서 수리비가 폭탄으로 나올 것이다. 재수없으면 연료계통[18]을 완전히 교체해야 할지도 모른다. 최소 500~700이상으로.
| |
− | 한랭에 취약함: 날씨가 아주 추운 겨울에는 경유가 굳어버리는 일이 발생한다.[19] 일단 여름에 저장해 둔 하절기용 경유라면 파라핀 첨가량이 많아 젤리처럼 통으로 굳어지고, 11월 초부터 3월까지 공급되는 동절기용 경유도 영하 19도가 되면 굳어버린다. 강원도와 경기북부, 경북북부에는 혹한기용 경유가 공급되지만, 하절기유>동절기유>혹한기유 순으로 연비가 나온다. 즉 어는점은 낮아지지만 연비 역시 저하된다는 것. 어찌되었든 이런 특성으로 인해 남부의 차량이 출발 전 가득 주유하고 강원도나 스키장으로 놀러갔다 다음 날 아침에 시동을 못 걸어 고생하는 사태가 자주 발생한다. 경유차량을 운행한다면 스키장이나 강원도 여행을 갈 때는 거기서 기름을 주유하고 시동을 끄자.
| |
− | 또한 압축착화를 하는 디젤 엔진 특성상, 차가우면 시동이 가솔린 엔진보다 잘 안 걸리는 것도 문제이나, 엔진이 무거워서 열용량이 큰 탓에 엔진가열이 늦고 그로 인해 냉각수 가열도 덩달아 늦어지면서 시동 초기에 히터가 제 역할을 못한다. 최근의 디젤 승용차에는 보조히터가 장착되지만 FFH 같은 연소식 히터를 채택하는 경우도 있으나 이는 난방을 위해 연료를 따로 연소하게 되어 연비가 나빠지고 전기를 사용하는 PTC 방식의 경우에는 성능이 매우 떨어진다.[20]
| |
− | 비싼 가격 : 상기 서술한 특징들의 콜라보 덕분(?)에 동배기량의 가솔린 엔진에 비해서 가격이 비싸다. 자연흡기식 가솔린 엔진에 비해 엔진 블록 두께도 더 두껍고 커먼레일과 고압 연료펌프, 그리고 터보차저+인터쿨러가 더 붙고 거기에 환경규제를 충족하기 위해 EGR+DPF 등이 또 다시 추가되면서 원가가 상승한다. 기본적으로 엔진부에만 추가되는 비용이 이렇고 차량 자체에 추가되는 방진구조까지 포함되면 가격은 더 올라간다. 그리고 최근에는 환경규제가 빡세지면서 요소수 장치까지 추가되어 가격은 안드로메다 행. 모조리 최신 기술이 집약된 정밀 부품들이라 부품비만도 장난 아니다.[21]
| |
− | | |
− | {{각주}}
| |
| | | |
| ==참고자료== | | ==참고자료== |
2021년 7월 6일 (화) 16:15 판
디젤 엔진(Dieselengine)은 독일에서 디젤(Diesel)이 발명한 내연기관으로 공기를 높은 온도로 압축을 하고 경유, 중유 같은 연료를 실린더 안에서 분출하여 자연적인 발화로 인해 점화되어 피스톤이 움직여 작동하는 장치이다.
개요
디젤 엔진은 실린더 안에 공기를 온도를 높여서 압축을 하는데 이때 연료를 분사하여 자연 발화로 구동 에너지를 얻어 작동한다.
온도를 높여서 압축 할 때는 실린더 내부 압력이 약 100kg/cm2 정도가 나오고 연료를 연소 할 때는 화학 에너지가 열에너지로 바뀌면서 온도가 2,480C 정도까지 올라간다.
실린더 내부 높은 온도로 압축된 공기로 연료가 점화되기 위해서는 실린더 내부의 온도가 일정 온도 이상이 되어야만 한다. [1]
역사
디젤 엔진을 발명한 사람은 독일인 발명가 루돌프 디젤(Rudolf Diesel)이다. 디젤 이란 이름도 루돌프(Rudolf Diesel) 디젤이란 이름에서 따왔다.
루돌프 디젤은 카르노가 고안한 순환과정 즉, 물체가 온도·압력·부피 등에 의해 결정되는 어떤 열역학적인 상태에서 출발해 어떤 경로를 지나 다시 처음의 상태로 되돌아오는 과정을 순환이라 한다는 개념을 근거로 피스톤에 의해 공기를 압축한 실린더 내에서 연소 시키고, 대기 압력까지 단열 팽창 시키는 열기관을 제작하여 열기관의 작동 사이클과 실행 방법에 대해 특허를 받았고 논문도 발표하였다. 이후 최초의 1기통 기관을 제작하였다. 피스톤은 링이 없는 방식을 사용하였고 연료는 가솔린을 사용하였는데 , 혼자서는 주행이 불가하였기에 이 시도는 실패로 돌아갔다.
이후 여러 번의 실험을 거치면서 1897년 2월 17일에 작동이 가능한 최초의 디젤 기관을 완성하였다.
1903년, 선박용 디젤기관이 최초로 제작되었다. 4행정 4기통 기관으로 400RPM에서 140ps를 기록하였고 같은 시기에 출력 400ps의 4행정 4기통 기관을 6대만들었는데, 이것은 최초의 디젤 발전기가 되었다.
2차 대전 이후 디젤 기관은 자가용은 물론 철도 차량, 중장비, 트럭, 대형 선박, 비행기까지 거의 모든 엔진이 들어가는 물체의 기관으로서의 역할을 해냈다. [2]
[3]
원리
디젤 엔진의 원리는 높은 온도로 압축된 공기로 연료를 분출하여 발화 하는 압축 발화 방식을 사용한다. 디젤 엔진 연료의 특성 상 가솔린보다 낮은 온도에서 발화가 가능하다(즉 발화 점이 낮다)는 점에서 압축 방화 방식이 가능하다.
그리고 디젤 엔진이 동작하는 기본 원리는 폭발이다. 가솔린 엔진은 동작을 하기 위해서 공기와 가솔린 연료를 혼합한 기체를 연소실에 넣는다 그다음 피스톤으로 압축하고 전기 스파크를 발생시켜서 점화를 하는데 디젤은 척화점이 낮기때문에 연료를 압축된 뜨거운 공기에 분사를 하는 즉시 폭발해 버리는 것이다. 이때 발생하는 폭발은 진동과 소음을 발생시키는데, 이점이 가솔린 엔진을 쓰는 차량보다 시끄럽다.[4]
[5]
종류
디젤엔진의 종류에는 2행정 기관 그리고 4행정 기관이 있다 대부분의 디젤 엔진은 4행정 기관이고 나머지 대형 기관은 2행정 기관이다.
[6]
4행정기관
각 피스톤의 순서가 아래에서 위 그리고 다시 아래에서 위로 올라가는 순서를 가진 사이클이다. 첫번째 아래로 갈때 공기를 흡입하여 실린더에 주입하고 피스톤이 올라가는 과정에서 공기를 압축하는과정을 거치고 또다시 아래에서 위로 올라가는 과정이 있는데 이때는 두번째 하강 과정에서 연료를 분출하여 폭발 시키고 두번째 올라가는 과정에서 연소된 배기가스를 빠져나가게 한다 이렇게 하강 상승 하강 상승을 하면서 4단계로 거친 행정을 하는 기관으로 4행정 기관이다.[7]
2행정기관
각 피스톤 순서가 아래에서 위로 올라가는 형태의 사이클이다
2행정 기관은 4행정 기관 과는 다르게 피스톤이 크랭크 축을 회전하여 구동하고 배기 벨브로 동시에 열리는 내연기관이다. 피스 톤이 순서가 아래 일때 실린더가 열리면서 배기 가스를 배출하고 그러면서 동시에 정화된 깨끗한 공기를 흡입한다. 이 연소된 배기 가스는 배기 밸브가 열리면서 빠져나간다.
2행정 기관은 하강 상승의 과정을 거친 행정만 하여 2행정 기관이다. 2행정 기관은 큰 힘이 필요한 기계에 사용한다.
[8]
연소실 종류
직접분사식
직접분사식(Direct Injection Type)은 단일 연소실에서 고압으로 연료를 분출하여 주로 분출하는 속도에 의해서 공기와 혼합 시키는 형식이다.
예연 소실식
예연 소실식(PreCombustion Chamber Type)은 연료가 예연소실식 에서 먼저 분사 되어 연소 되고 예연소실에 의해 생긴 압력 때문에 나머지 연료를 실린더 내로 분출 시켜 연소 와류에 의해 공기와 혼합되는 형식이다.
와류실식
와류실식(Turbulence Chamber Type)은 연소실을 특수한 형상으로 하여 압축 행정에 의해서 그 속에 일어난 공기 와류 중에 연료를 분사하여 완전 연소를 시키기 위한 형식이다.
공기실식
공기실식(Aircell Combustion Chamber Type)은 압축 행정 중에 공기를 밀어 넣고 이것을 향해서 연료를 분사하여 공기실 내에서 연소를 일으키고 그에 의해서 생긴 압력에 의해서 주연 소실로 가스를 분출 시켜 와류를 발생 시키는 형식이다.[9]
가솔린 엔진과의 비교
먼저 첫번째 차이점은 연료이다. 연료를 가솔린 엔진은 가솔린 즉 휘발유를 사용하고 , 디젤 엔진은 경유를 사용한다. 그리고 디젤 엔진 과 가솔린 엔진의 차이는 먼저 작동 원리부터 차이가 있다. 가솔린 엔진은 먼저 연료와 공기를 흡입하고 흡입한 연료와 공기를 압축을 한다. 이때, 압축 비율은 10분의 일이다 압축한 연료와 공기를 섞은 후 실린더에서 점화 플러그의 스파크로 점화 시키고 폭발하여 연소를 시키고 그다음 구동 에너지를 얻는다. 그리고 연소 가스를 배출한다. 디젤 엔진 은 앞에서 계속 설명 했듯이 공기를 먼저 흡입하고 이 공기를 압축한다. 이때 압축 비는 20분의 일이다. 여기서 압축 비율이 가솔린 엔진이 공기를 압축하는 비율과 다르다는 차이 가 있다. 그리고 연료를 공기에 분출하고 자연 발화를 하여 점화 시키고 구동 에너지를 얻는다. 이때 팽창 방식이 가솔린 엔진이 팽창 방식과 다르다. 이렇게 가솔린 엔진과 디젤 엔진은 발화 하는 방식이 다르다. 이러한 팽창방식 과 발화 방식의 차이는 연비의 차이로 넘어간다. 보통 가솔린 엔진은 약 25%, 디젤 엔진은 약 35%의 효율을 갖는 데, 이 말은 100중에 가솔린 엔진은 25정도 에너지를 갖는것이고 디젤 엔진은 35정도 에너지를 갖는 것 이다. 디젤 엔진이 가솔린 엔진에 비해 같은 양이라 가정을 했을때 더 많은 에너지를 생성하기 때문에 디젤 엔진이 가솔린 엔진에 비해 당연히 연비가 높을 수 밖에 없다. 트럭 같은 대형 차량은 자가용 차량보다 당연히 에너지가 훨씬 많이 필요한데, 이러한 더 많은 에너지가 필요한 차들에 디젤 엔진을 사용한다. 하지만 가솔린 차량이 우수한 부분도 있는데, 이는 승차감에서 이다. 그 이유를 살펴보면, 디젤 차량은 가솔린 차량에 비해 더 높게 압축된 공기에서 발화하기 때문에 상대적으로 진동과 소음이 클 수 밖에 없는데 따라서 보다 큰 진동과 소음을 피하기 위해서는 가솔린 엔진을 가진 차량이 더 괜찮다.[10][11]
장점
디젤 엔진은 경유를 사용하는데 경유는 휘발유보다 가성 비 가 좋다. 연소할 때 운동에너지가 열에너지로 전환이 되는데, 휘발유는 열에너지의 30% 운동에너지로 전환하는데 디젤은 45%인 휘발유보다 더 많은 양을 운동에너지로 전환한다.
가성비도 좋을 뿐만 아니라 저렴하기 까지 하다. 휘발유는 주로 자가용 차가 주행할수 있도록 하게 하는 연료로만 쓰인 반면 경유는 주로 대형차 중형 차 산업용 차량까지 쓰이는데 이때문에 나라마다 각각 세금 감면을 해주는 혜택을 주기 때문이다. 그래서 한국은 가격이 높은 휘발유보다 가격이 보다 저렴한 경유를 쓰는 디젤 엔진 차량을 크게 선호하게 되었다. 최근 휘발유의 가격이 전보다 내려갔음에도 아직도 휘발유가 비싸기 때문에 한국에서 디젤 엔진 차의 수요는 줄어들지 않을 것으로 보인다.
그리고 경유는 휘발유 보다 안전한데, 경유는 휘발 가능성이 낮아 인화성 수증기를 많이 발생 시키지 않고 폭발하지 않는다 그리고 윤활성이 좋고 오래쓸수 있다.
경유는 호환성이 좋아 높은가격대의 차량이든 국산차량, 독일산 차 구분 할 것 없이 어디에서나 호환이 가능하다. 그리고 가격이 비싸든 가격이 싸든 그렇게 성능의 차이가 많이 나타 나지 않는다.
디젤 엔진은 불필요한 열을 잘 발생 시키지 않는다. 열효율이 가솔린 엔진보다는 월등한데, 연비도 가솔린 엔진보다 휼륭하다. 기술이 더욱더 발전 할 수록 가솔린 엔진은 점차 사라질 것이다.디젤 엔진은 연소를 하고난 후 단위 질량당 에너지의 밀도와 온도가 가솔린 엔진에 비해 상당히 낮은 편이다.이러한 면에서 터빈이 고열에 의해 손상될 위험성이 낮다.
그리고 디젤 엔진을 만들때 설계를 하는 부분에서 실린더 부피의 제약이 거의 없다. 가솔린 엔진은 점화플러그 근처의 혼합기부터 전기불꽃을 당겨 점화시키고 나머지 부분은연속적으로 반을 하는 구조이므로 실린더 부피가 커지면 점화 플러그에서 먼 곳에 있는 혼합기는엔진 점화가 적절하지 않은 시점에서 점화가 일어나게 되고 연료의 연소를 제어할수 없게된다. 그로 인해 실린더 1개당 낼 수 있는 출력이 제한되면서 실린더의 숫자를 늘리게 되어야 하고 그에 따라 설계가 늘어나는 실린더의 수 만큼 복잡해지는 문제가 있다. 하지만 이에 반해 디젤 엔진은 실린더 내의 모든 혼합기가 동시에 점화되므로 계속해서 연속되는데 문제가 없으며 대형 엔진을 만들려면 그냥 실린더를 크게 만들면 된다.이러한 설계도 면에서 결정적인 차이 때문에 가솔린 엔진은 주로자가용 엔진으로 발전되지 못했지만 디젤 엔진은 아주 작은 엔진에서 부터 엄청나게 큰 엔진까지 제작 가능하게 되었다.[12]
[13]
단점
디젤 엔진의 가장 큰 단점은 진동과 소음인데, 진동이 심한이유는 배기가스를 연소시키는 과정에서 미세먼지 등을 완전히 연소 시켜야하고
디젤이 진동이 심한 이유 중 하나는 배기가스 중 미세먼지를 줄이기 위해선 연료를 완전 연소 시켜야 하고,공기만을 실린더 안에 흡입한다. 공기를 고온,고압으로 압축해야 하기 때문에 연소실 온도를 높게 해줘야 한다 이때문에 압축비를 20분의 1의 비율로 압축을 해야하는데 10분의 일로 압축을 하는 가솔린 엔진보다 압축률이 더 높다 압축률이 높은데 다가 디젤 엔진은 열 효율과 내구성을 위해 철로 만든 피스톤을 쓰기 때문에 진동이 더 심해지는 이유이다. 이때문에 항공기에서는 디젤 엔진을 잘 쓰지 않는다고 한다. 그리고 소음 발생 시키지 않는 차량들은 진동 문제 때문에 디젤 엔진을 잘 쓰지 않는다.
참고자료
같이 보기
이 디젤엔진 문서는 자동차 부품에 관한 토막글입니다. 위키 문서는 누구든지 자유롭게 편집할 수 있습니다. [편집]을 눌러 이 문서의 내용을 채워주세요.
|
자동차 : 자동차 분류, 자동차 회사, 한국 자동차, 독일 자동차, 유럽 자동차, 미국 자동차, 중국 자동차, 일본 자동차, 전기자동차, 자동차 제조, 자동차 부품 □■⊕, 자동차 색상, 자동차 외장, 자동차 내장, 자동차 전장, 자동차 부품 회사, 배터리, 배터리 회사, 충전, 자동차 판매, 자동차 판매 회사, 자동차 관리, 자동차 역사, 자동차 인물
|
|
자동차 부품
|
계기 • 레저보어(리저버) • 레저보어 탱크(리저버 탱크) • 보조장치 • 부품 • 비순정부품 • 소모품 • 순정부품 • 스프링 • 아세이(어셈블리) • 옵션 • 운전장치 • 자동차 부품 • 정품 • 케이블 • 튜닝 • 파이프 • 햅틱 • 호몰로게이션
|
|
차대(섀시)
|
3 in 1 • VIN • 강선 • 강판 • 공차 (오차) • 공차 (자동차) • 공차중량 • 단차 • 드레인홀 • 롤링섀시 • 모노코크 • 바디 • 바디온프레임 • 배분중량 • 보일러 • 섀시 • 소자 • 에어백 모듈 • 연결모듈 • 오일 • 오일팬 • 워터펌프(냉각수 펌프) • 인버터 • 인클로저 • 중량 • 차대(섀시) • 차대번호 • 차량 총중량(GVW) • 철판 • 촉매장치 • 충전기 • 캐빈룸 • 캡오버 • 컨버터 • 크러시존(크럼플존) • 프레임 • 프로펠러 • 플러그 • 히트펌프
|
|
엔진
|
2기통 • 4기통 • 5기통 • 6기통 • 7기통 • 8기통 • 10기통 • 12기통 • 16기통 • 18기통 • 20기통 • LPDI엔진 • LPG엔진 • LPI엔진 • OHV • PS • rpm • V형엔진 • 가솔린엔진 • 가스터빈 • 공랭식 엔진 • 기화기 • 내연기관 • 냉각수 • 냉각장치 • 냉각제 • 냉각팬 • 냉간상태 • 노즐 • 다기통 • 디젤엔진 • 라디에이터 • 마력 • 배기밸브 • 밸브 • 봄베 • 부동액 • 분사 • 석유엔진 • 선박 엔진 • 수랭식 엔진 • 수소탱크 • 수소터빈 • 수평대향 엔진 • 슈퍼차저 엔진 • 스로틀바디 • 스로틀밸브 • 실린더 • 싱글터보 • 양자엔진 • 엔진 • 엔진룸 • 엔진마운트 • 엔진오일 • 엔진제어장치 • 연료분사기 • 연료시스템 • 연료전지 • 연료주입구 • 연료탱크 • 연료파이프 • 연료펌프 • 연료필터 • 열기관(열원동기) • 왕복기관 • 외연기관 • 원동기 • 원자력기관 • 원형봄베 • 자동차 엔진 • 자연흡기엔진 • 점화케이블 • 점화플러그 • 제트엔진 • 증기기관 • 증기터빈 • 직렬엔진 • 최고출력 • 최대토크 • 캠 • 캠축(캠샤프트) • 커넥팅로드(연결봉) • 크랭크 • 크랭크축 • 탱크 • 터보랙 • 터보엔진 • 터보차저 • 터빈 • 토크 • 트윈터보 • 파워팩 • 플라이휠 • 피스톤 • 피스톤 엔진 • 항공기 엔진 • 흡입밸브
|
|
모터
|
고정자(스테이터) • 교류모터 • 교류발전기 • 구동모터 • 구동모터 최대출력 • 동기모터 • 듀얼모터 • 모터 • 모터룸 • 발전기 • 시동모터 • 싱글모터 • 용단 • 유도모터 • 인휠모터 • 인휠시스템 • 인휠헥사모터 • 직류모터 • 직류발전기 • 축전지 • 코일 • 토크컨버터 • 트라이모터(트리플모터) • 퓨즈 • 퓨즈박스 • 퓨즈풀러 • 필라멘트 • 회전자(로터) • 회전축
|
|
구동장치
|
4매틱 • AWD 디스커넥터 • B-ISG • HTRAC • IGBT • PE모듈 • TCU • xDrive • 가변축 • 가속기 • 가속기 (자동차) • 감속기 • 공회전 속도조절 장치 • 공회전 제한 장치(ISG) • 구동 • 구동벨트 • 구동장치 • 구동축 • 기어(톱니바퀴) • 기어박스 • 기어비 • 기어오일 • 다운시프트 • 동력전달장치 • 뒷차축(리어액슬) • 듀얼클러치 • 무단변속기 • 미션 • 미션오일 • 배전기 • 벨트 • 변속기 • 사륜구동 • 앞차축(프런트액슬) • 업시프트 • 이륜구동 • 전륜구동 • 전축 • 종감속기어 • 차동기어(디퍼런셜) • 차동장치 • 차축(액슬) • 추진축 • 축 • 클러치 • 타이밍벨트 • 파워트레인 • 프로펠러 샤프트 • 후륜구동 • 후축
|
|
조향장치
|
경사각 • 너클암 • 너클 조인트 • 로어암 • 사륜조향 • 스러스트 • 스러스트 각 • 스티어링(조향장치) • 스티어링너클(너클) • 스티어링박스 • 스티어링 샤프트 • 스티어링암 • 어퍼마운트 • 어퍼암 • 전경각 • 전륜조향 • 조향축 • 캐스터 • 캠버 • 캠버각 • 킹핀 • 킹핀 경사각 • 킹핀 오프셋 • 토우 • 후경각 • 후륜조향 • 휠 밸런스 • 휠 얼라인먼트
|
|
제동장치
|
ABS • EBD • HHC • 경사로 밀림 방지 • 드럼브레이크 • 디스크 브레이크(디스크 로터) • 미끄럼 방지장치 • 베이퍼로크 • 보조제동장치(BA) • 브레이크드럼 • 브레이크라이닝 • 브레이크슈 • 브레이크 어시스트 시스템 • 브레이크오일 • 브레이크패드 • 슈팅 브레이크 • 오버라이드 • 오토홀드 • 전자식 제동력 분배(EBD) • 제동장치(브레이크) • 캘리퍼 • 클램프 • 클램핑력(클램프력) • 트랙션 컨트롤 시스템(구동력 제어장치)
|
|
서스펜션
|
가변댐퍼 • 고무부싱(러버부싱) • 기계식 서스펜션 • 댐퍼(제진기) • 더블위시본 서스펜션 • 마운트 • 매직 바디 컨트롤 • 부싱 • 서스펜션(현가장치) • 서스펜션암(컨트롤암) • 쇼크업소버 • 스트럿 서스펜션 • 액티브 서스펜션 • 에어매틱 • 에어서스펜션 • 에어스프링 • 전자제어 서스펜션 • 주파수 감응형 댐퍼 • 코일스프링 • 판스프링 • 플레이너 시스템 • 하시라 • 하이드로 부싱 • 현가상질량 • 현가하질량
|
|
흡배기장치
|
매연저감장치 • 배기 • 배기음 • 배기장치 • 배출 • 에어덕트 • 흡기 • 흡기장치 • 흡배기 • 흡배기장치 • 흡입
|
|
위키 : 자동차, 교통, 지역, 지도, 산업, 기업, 단체, 업무, 생활, 쇼핑, 블록체인, 암호화폐, 인공지능, 개발, 인물, 행사, 일반
|
|
- ↑ 〈디젤 엔진〉, 《위키백과》
- ↑ 〈디젤 엔진〉, 《위키백과》
- ↑ 〈https://namu.wiki/w/%EB%94%94%EC%A0%A4%20%EC%97%94%EC%A7%84 디젤 엔진]〉, 《나무위키》
- ↑ 〈디젤 엔진〉, 《위키백과》
- ↑ 〈디젤 엔진의 동작원리 및 특징 〉, 《쫄깃쫄깃붕어빵 블로그》
- ↑ 〈디젤 엔진〉, 《위키백과》
- ↑ 〈4행정 기관〉, 《위키백과》
- ↑ 〈2행정 기관〉, 《위키백과》
- ↑ 〈디젤 엔진 연소실의 종류〉, 《수레 닷컴》
- ↑ 윤지우, 〈가솔린 엔진vs디젤 엔진〉, 《sk에너지 블로그》, 2015-07-17
- ↑ 기하영, 〈(車, 이것이 궁금하다)디젤차 vs 가솔린차…연비·승차감에 물어봐〉, 《아시아 경제》, 2017-06-09
- ↑ 〈디젤의 장점 〉, 《Jasper》
- ↑ 〈디젤 엔진 〉, 《나무 위키》