검수요청.png검수요청.png

"바퀴"의 두 판 사이의 차이

위키원
이동: 둘러보기, 검색
(구성요소 및 관련 용어)
(계절별)
39번째 줄: 39번째 줄:
  
 
====계절별====
 
====계절별====
타이어를 사계절용, 겨울용, 여름용으로도 나눌 수 있다. 일반적으로 겨울용 타이어는 저온에서도 유연함을 유지하는 소재를 사용하며 블록형 트레드 패턴으로 구동력과 미끄럼 방지를 고려하여 제작된다. 사계절용 타이어는 적설 기간이 짧은 지역에서 계절 별로 타이어를 교체하는 불편함을 해소하기 위해 쓰는 타이어다. 여름용 타이어보다 트레드에 커프를 많이 설계한다. 대한민국에서는 겨울용 타이어를 제외한 모든 계절용 타이어를 지칭한다.
+
타이어를 사계절용, 겨울용, 여름용으로도 나눌 수 있다. 일반적으로 겨울용 타이어는 저온에서도 유연함을 유지하는 소재를 사용하며 블록형 트레드 패턴으로 구동력과 미끄럼 방지를 고려하여 제작된다. 사계절용 타이어는 적설 기간이 짧은 지역에서 계절 별로 타이어를 교체하는 불편함을 해소하기 위해 쓰는 타이어다. 여름용 타이어보다 사이프를 많이 설계한 트레드 패턴을 사용한다. 대한민국에서는 겨울용 타이어를 제외한 모든 계절용 타이어를 지칭한다. 여름용은 눈이 오지 않는 시기에 사용하는 타이어로 고속 주행에 따른 소음 및 승차감, 조종안정성에 초점을 맞춘 타이어다. 가장 일반적으로 사용하는 타이어로 별도의 지침이 없으면 여름용 타이어는 일반 타이어를 의미한다.<ref name="ㅎㅌ"></ref>
  
 
===휠 종류===
 
===휠 종류===

2021년 8월 26일 (목) 11:14 판

바퀴

바퀴(Wheel)는 회전을 목적으로 축에 장치하는 둥근 테 모양의 물체다. 자동차의 바퀴는 차륜(車輪)이라고도 한다.[1] 자동차에서 바퀴는 고무 재질인 휠(Wheel)과 타이어(Tire)의 조합체로, 자동차 전체의 중량을 지탱하는 동시에 회전하여 차량이 주행하도록 하는 물체다.[2]

개요

바퀴는 인류 역사상 가장 중요한 발명품 중 하나로, 모든 차량의 기본적인 부품으로 사용된다. 자동차 바퀴는 휠과 타이어로 이루어져 자동차 하중을 지탱한다. 동시에 제동력, 회전력, 노면 충격, 선회 시 원심력, 횡력 등 주행 시 발생하는 현상에 대응한다.[2] 바퀴의 역학적 원리는 미끄럼마찰(sliding friction)을 굴림마찰(rolling friction)로 변화시켜서 물체가 이동할 때의 저항을 감소시키는 데에 있다. 초기 바퀴는 통나무를 둥글게 자른 원판 바퀴에서 시작되어 타이어와 결합한 현재의 수송용 바퀴로 진화하였다. 현재 바퀴는 주요한 요소로 소재, 고정 방식 등의 다양한 기준으로 분류할 수 있다.[1]

기원

바퀴의 기원에 대해서는 여러가지 설이 있으나, 일반적으로 굴림대와 썰매가 결합하여 탄생했다고 한다. 굴림대는 무거운 짐을 나를 때 그 밑에 넣고 굴리는 용도로 쓰는 통나무였다. 굴림대를 지속해서 쓰기에는 짐이 이동하면 남고 무겁다는 불편함이 있어서 이것을 개선하는 방안으로 등장한 것이 바퀴의 전신이라고 전해진다.[1] 바퀴는 고대문명의 발상지인 메소포타미아에서 처음 모습을 드러냈다고 알려져 있으며, 최초에는 그릇을 빚는 도자기 물레의 용도로 쓰였다고 한다. 기원전 5천년 경부터 통나무를 잘라 간단 원판 형태의 바퀴를 사용했다. 이후 기원전 3500년경 나무바퀴는 세 조각의 두꺼운 판자를 맞추어 연결대를 박아서 만든 형태로 진화했다. 이후 수레와 전차가 발달하면서 바퀴도 자주 활용하게 되었다. 기원전 2000년 경에는 바퀴통과 테두리 바퀴를 연결하는 바퀴살로 구성된 바퀴살 바퀴가 등장했다. 이후 기원전 100년 경에는 바퀴 테두리에 철판을 두른 바퀴살 바퀴로 진화되었다. 이 바퀴살 바퀴는 확산되어 수차, 톱니바퀴, 물레바퀴 등으로 활발하게 쓰이기 시작했다.[3] 기원 후, 전쟁 시 대포 바퀴를 운송하고자 금속 개량이 이루어지면서 현재의 튼튼한 바퀴로 진화되었다.[1]

작동 원리

자동차 바퀴는 휠과 타이어로 구성된다. 자동차가 주행하기 위한 구동력을 노면에 전달하고, 제동 시 노면과의 마찰을 발생시켜 제동력을 발생시키는 역할을 한다. 공기주입식 타이어의 경우, 노면의 진동을 흡수하는 기능과 원심력에 대한 저항성을 갖추고 있다.[4] 자동차 바퀴는 엔진(engine)과 동력전달장치(power transmission device), 서스펜션(Suspemnsion), 스티어링휠(steering wheel), 브레이크(brake) 등 다양한 부품과 유기적으로 연결되어 동력을 유발한다. 바퀴는 구동력을 발생시키는 구동 바퀴와 단순히 구르는 기능만을 가진 피동 바퀴로 나눌 수 있는데, 자동차에 쓰이는 바퀴는 구동 바퀴다. 구동 바퀴는 자축에 작용하는 회전력을 이용해서 바퀴의 타이어로 노면을 미는 힘을 발생시킨다. 자동차의 바퀴는 허브(Hub)에 의해 차축(Axle)에 장착되어 노면에 접한 상태에서 굴러가는 구조다. 엔진의 동력으로 차축을 회전시키는 회전력이 바퀴에 전달되고, 바퀴에는 접하는 노면을 뒤로 미는 힘이 발생한다. 이때 발생되는 힘이 구동력으로 이 힘으로 자동차는 앞으로 나아가는 것이다.[5]

특징

구성요소 및 관련 용어

자동차 바퀴는 휠과 타이어로 이루어져 있다. 휠을 타이어에 끼워 차축에 결합하여 사용한다.

  • (Wheel)
    • (Rim) : 휠에 타이어가 결합되는 원통형의 테두리 부분을 가리킨다. 림의 크기는 5J×14와 같이, 림의 너비(인치 단위)와 플랜지 모양 기호×림의 지름(인치 단위) 형식으로 표시한다.
    • 플랜지(Flange) : 림의 가장자리에 해당하는 테두리 부분으로 림을 보호하는 역할을 한다. 알로이 휠 중 플랜지가 튀어나오지 않은 형태는 논 플랜지(Non-flange) 또는 플랜지리스(Flangeless)라고 부른다.
    • 휠 너트(Wheel nut) : 휠을 허브에 고정하는 데 쓰이는 너트다. 영어로 러그 너트(Lug nut)라고 한다. 승용차에서는 휠 하나당 4~6개가 쓰이지만 경주차에서는 빠른 타이어 교환을 위해 너트 하나로 잠그는 센터락(Center lock) 방식이 사용된다.
  • 타이어(Tire)
    • 트레드(Tread) : 타이어가 지면과 닿는 부분이다. 마찰력과 선회 특성, 배수성과 직진성 등을 고려하여 다양한 형태의 그루브가 파여있다. 그루브에 의해 새겨진 트레드 형태를 트레드 패턴(Tread pattern)이라고 하며, 모양에 따라 리브(Rib)형, 러그(Rug)형, 리브러그(Rib-rug)형, 블록(Block)형 등으로 나눌 수 있다. 현재 쓰이는 승용차용 타이어는 대부분 여러 패턴이 적절히 혼합되어 있다.
    • 그루브(Groove) : 타이어의 트레드에 파여진 홈이다. 설계 목적에 따라 U자형이나 凹자형 단면을 가진다. 그루브의 주 역할은 젖은 노면에서 타이어 배수를 돕고 타이어와 노면 사이의 마찰로 생기는 열을 발산하는 것이다. 또한, 트레드 블록의 단위면적당 접지압력을 향상하는 기능도 한다. 사이프(Sipe)는 그루브와 구별되는 개념으로, 트레드의 단단함을 조절하고 눈길에서 접지력을 높이기 위해 트레드 블록에 너비 1mm 정도로 가늘게 판 홈이다. 커프(Kerf)라고도 부른다.
    • 사이드 월(Side wall) : 타이어의 옆부분을 일컫는 말이다. 차체를 수직방향으로 지지하는 역할과 함께 적당한 유연성으로 노면으로부터 받는 충격을 완화하는 역할도 한다.
    • 숄더(Shoulder) : 트레드와 사이드 월 사이의 부분을 말한다.
    • 비드(Bead) : 타이어의 안쪽 테두리 부분이다. 휠의 림과 결합되어 타이어의 형태를 유지하고 밀폐시키는 기능을 한다.
    • 컴파운드(Compount) : 타이어의 트레드에 쓰이는 고무 합성물질이다. 일반적으로 천연 또는 합성고무에 카본 블랙과 같은 여러 약품을 혼합하여 만들어진다. 컴파운드는 트레드 패턴과 함께 타이어의 특성을 결정하는 중요한 요소다.[6]
    • 카카스(Carcass) : 타이어 내부의 섬유나 스틸로 구성된 코드 층이다. 타이어의 골격을 형성한다.[7]

제원

  • 오프셋(Offset) : 휠이 끼워지는 허브와 휠의 접촉면과 림 너비 중간점의 거리 차이를 수치로 나타낸 것이다. 즉, 휠을 측면에서 봤을 때 림의 중심선이 차량에 장착되는 허브 면으로부터 얼마나 벗어나는지를 의미한다. 오프셋으로 휠을 분류할 수 있는데, 제로 오프셋(Zero offset), 포지티브 오프셋(Positive offset), 네거티브 오프셋(Negative offset)이 있다. 제로 오프셋은 휠의 접촉면과 림 너비 중간점이 같은 평면상에 있는 것이고, 포지티브 오프셋은 휠 접촉면이 림 너비 중간점에서 차체 바깥쪽으로 치우친 것, 네거티브 오프셋은 휠 접촉면이 림 너비 중간점보다 차체 안쪽으로 치우친 것이다. 네거티브 오프셋은 마이너스 휠(Minus wheel)이라고도 부른다. 오프셋을 고려하여 바퀴를 장착하지 않으면 타이어가 차체 밖으로 튀어나와서 외관상 좋지 않을 뿐 아니라 오프셋의 변화는 주행안정성에 영향을 미친다.
  • PCD(Pitch Circle Diameter) : 휠 볼트의 중심이 이루는 가상의 원의 지름이다. 일반적인 승용차의 휠 볼트는 4개, 5개, 6개로 구성되며, 4개 볼트의 중심이 100mm 지름으로 분포되어 있을 때는 4×100mm와 같이 표시한다.
  • 편평비(Aspect ratio) : 타이어의 단면 너비에 대한 타이어 높이의 비율을 나타내는 수치다. 타이어의 높이는 비드 끝에서 트레드의 돌출면 가장 위까지의 길이로 한다. 휠과 타이어를 키울 때 타이어 전체 지름의 변화가 크지 않도록 편평비와 타이어의 너비를 고려해야 한다. 휠의 오프셋 변화가 없는 상태에서 타이어 너비가 넓어지면 타이어가 회전하거나 상하운동할 때 차체에 닿을 수 있고, 타이어 전체 지름이 변하면 속도계와 적산거리계·구간거리계 수치에 오차가 발생하기 때문이다.[6]
  • 인치수 : 휠의 지름이다. 타이어 직경이 같을 때 작은 휠을 사용하면 그만큼 편평비가 높고 사이드 월이 두꺼운 타이어를 사용할 수 있더 승차감, 가속력, 연비, 소음 면에서 우수하지만, 고속주행 안정성과 코너링 안정성 면에서는 불리하다. 반대로 휠이 커질수록 타이어의 편평비는 작아지고 타이어가 얇아서 승차감, 가속력, 연비, 소음 면에서는 떨어지지만, 접지력과 고속주행 안정성, 코너링 안정성에서는 우수하며, 더 큰 브레이크를 장착할 수 있다. 즉, 절대적으로 좋은 휠의 지름이 있는 것이 아니라 차량의 특성과 이용 목적에 따라 적절한 사이즈의 휠을 고르는 것이 바람직하다.
  • 림폭: 휠의 축방향 폭이다. 인치 단위로 표기한다. 타이어 사이즈에 따라서 장착이 가능한 림폭 범위와 타이어 성능이 가장 효과적으로 발휘되는 림폭이 정해져 있다. 보통 휠 림폭은 타이어 단면적의 70~90% 내에 들도록 선택하는데, 이는 대략적인 수치이며 타이어 종류에 따른 규격표에서 사이즈를 확인하고 림폭을 설정하는 것을 권장한다. 만일 허용 림폭 범위보다 타이어가 넓으면 거동이 불안정해지고, 휠 하우스 간섭이 생길 수 있다. 휠은 그대로 두고 타이어를 광폭으로 바꾼 거라면 중량 증가와 접지면적 증가로 인한 연비 손실까지 발생할 수도 있다. 반대로 허용 림폭 범위보다 타이어가 좁은 것을 끼우면 휠 하우스 간섭은 피할 수 있지만 지나치게 작으면 사이드월 손상, 심하면 휠 손상까지 갈 수 있고 최악의 경우 급격한 코너링 도중에 타이어가 빠지는 사고가 발생할 수 있다.
  • J·JJ : 림 단면의 형태다. J는 원피스 휠, JJ는 투피스 휠을 의미한다. J는 밸런스용 납을 넣기 좋지만, JJ는 그러기 어렵다.
  • 허브 지름 : 휠의 허브 지름은 차량 허브축의 지름과 일치해야 한다. 허브 지름이 작으면 차량에 장착 자체가 안되고, 크면 중심에 딱 맞춰 장착이 안되니 고속주행 때 진동이 발생한다. 허브링을 제작해 끼워서 해결하기도 한다.[8]

종류

바퀴는 타이어의 결합체로, 휠과 타이어의 소재나 크기, 특성에 따라 종류가 천차만별이다. 그뿐 아니라 고정방식, 휠과 타이어의 조화에 따라서도 바퀴의 특성이나 기능은 변화된다. 즉, 바퀴는 휠과 타이어의 특성, 고정 방식 등에 따라서 다양한 종으로 분류할 수 있다. 차량의 용도와 특성에 따라서 적절한 바퀴를 고르는 것이 중요하다.

타이어 종류

구조별

타이어는 구조별로 나누면 바이어스 타이어(Bias tire)와 래디얼 타이어(Radial tire)가 있다. 바이어스 구조는 건설차량용 타이어, 농경용 타이어, 산업차량용 타이어 제작에 적용되고, 래디얼 구조는 승용차용 타이어, 트럭 및 버스용 타이어 제작에 적용된다. 바이어스와 래디얼 구조의 가장 큰 차이점은 코드의 배열이다. 바이어스 타이어의 카카스는 1플라이씩 서로 번갈아 코드의 각도가 다른 방향으로 엇갈려 있지만, 래디얼 타이어의 경우 코드가 타이어의 원주방향에 직각으로 배열되어 있다. 바이어스는 타이어에 하중이 부과되고 코너링에서 트레드의 움직임이 많아 발열과 마모가 심할 수 있지만, 하중에 잘 견디기 때문에 비포장도로와 대형차량에 적합하며 주행 시 유연성과 승차감이 좋다. 반면에 래디얼은 트레드 강성이 높아 코너링시 쉽게 미끄러지지 않고 회전 저항이 낮다.[7]

계절별

타이어를 사계절용, 겨울용, 여름용으로도 나눌 수 있다. 일반적으로 겨울용 타이어는 저온에서도 유연함을 유지하는 소재를 사용하며 블록형 트레드 패턴으로 구동력과 미끄럼 방지를 고려하여 제작된다. 사계절용 타이어는 적설 기간이 짧은 지역에서 계절 별로 타이어를 교체하는 불편함을 해소하기 위해 쓰는 타이어다. 여름용 타이어보다 사이프를 많이 설계한 트레드 패턴을 사용한다. 대한민국에서는 겨울용 타이어를 제외한 모든 계절용 타이어를 지칭한다. 여름용은 눈이 오지 않는 시기에 사용하는 타이어로 고속 주행에 따른 소음 및 승차감, 조종안정성에 초점을 맞춘 타이어다. 가장 일반적으로 사용하는 타이어로 별도의 지침이 없으면 여름용 타이어는 일반 타이어를 의미한다.[7]

휠 종류

고정 방식

사제 바퀴

점검

전망

각주

  1. 1.0 1.1 1.2 1.3 바퀴〉, 《네이버 두산백과》
  2. 2.0 2.1 바퀴〉, 《네이버 용어해설》
  3. 박진희, 〈바퀴의 발명〉, 《네이버캐스트 물리산책》, 2012-05-29
  4. 함성훈, 〈자동차공학〉, 《네이버 학문명백과 : 공학》
  5. 자동차는 어떻게 움직이는 걸까요?〉, 《키즈현대》, 2019-06-08
  6. 6.0 6.1 휠 / 타이어 / 첨단기술 - 기능과 원리 ● 관련용어 ● 구성요소 ● 방식〉, 《자동차생활》, 2012-09-23
  7. 7.0 7.1 7.2 한국타이어앤테크놀로지 공식 홈페이지 - https://www.hankooktire.com/kr/
  8. 자동차/휠〉, 《나무위키》

참고자료

같이 보기


  검수요청.png검수요청.png 이 바퀴 문서는 자동차 부품에 관한 글로서 검토가 필요합니다. 위키 문서는 누구든지 자유롭게 편집할 수 있습니다. [편집]을 눌러 문서 내용을 검토·수정해 주세요.