"유도모터"의 두 판 사이의 차이
dltjsdud6771 (토론 | 기여) |
dltjsdud6771 (토론 | 기여) |
||
9번째 줄: | 9번째 줄: | ||
===단상유도모터=== | ===단상유도모터=== | ||
===3상유도모터=== | ===3상유도모터=== | ||
+ | 3상유도모터는 서로 다른 위상을 가진 3개의 교류를 이용해 전자석을 만들어 동력을 얻는 장치이다.<ref>친절한냉동C, 〈[https://m.blog.naver.com/PostView.naver?isHttpsRedirect=true&blogId=hvackkw&logNo=220545492977 3상 유도 전동기의 원리]〉, 《네이버 블로그》, 2015-11-20</ref> | ||
==장점== | ==장점== | ||
* 유도모터는 별다른 기교 없이 고정된 [[주파수]]를 가지는 상용 전원을 그냥 직입하더라도 탈조 없이 무난하게 회전력을 얻을 수 있다. 유도모터는 값비싼 전용 모터 드라이브를 사용하지 않아도 되며 부하가 있는 상태에서의 기동이 수월하다. | * 유도모터는 별다른 기교 없이 고정된 [[주파수]]를 가지는 상용 전원을 그냥 직입하더라도 탈조 없이 무난하게 회전력을 얻을 수 있다. 유도모터는 값비싼 전용 모터 드라이브를 사용하지 않아도 되며 부하가 있는 상태에서의 기동이 수월하다. |
2021년 10월 12일 (화) 18:10 판
유도모터는 교류로 동작하는 모터의 대표적인 예로, 고정자와 회전자로 구성된다. 교류 전기로 고정자에 회전 자기장을 발생시키고 도체의 회전자에 유도 전류를 발생시키면, 회전자가 전자기력을 받아 회전 자기장에 대응하여 회전 운동을 하는 원리로 작동한다.
개요
유도모터는 교류모터의 대표적인 예이다. 고정자가 만드는 회전 자계에 의해, 전기 전도체의 회전자에 유도 전류가 발생해 미끄러짐에 대응한 회전 토크가 발생한다. 입력되는 교류 전원의 종류에 의해서 크게 단상유도모터와 3상유도모터로 나뉘는데, 일반적으로는 특별한 기교 없이 회전 자장을 얻을 수 있는 삼상 교류를 이용한다. 같은 교류모터인 동기모터와 같이 탈조하는 일이 없기 때문에 토크 변동이 큰 부하에 적합하다고 여겨지지만, 미끄러짐에 의해 토크를 얻는 원리상 회전 속도의 제어가 곤란하게 되는 단점이 있다. 다만, 이 문제는 전력용 전자공학의 발전에 의해 인버터 회로로 회전수를 자유자재로 제어 가능하게 되었기 때문에 거의 해소되었다.[1]
작동 원리
유도모터와 동기모터에서, 모터의 고정자에 공급되는 교류 전력은 교류 진동에 맞춰서 회전 자기장을 생성한다. 동기모터의 회전자는 고정자 필드와 같은 속도로 회전하는 반면, 유도모터의 회전자는 고정자 필드보다 느린 속도로 회전한다. 따라서 유도모터 고정자의 자기장은 회전자에 대해서 변화하거나 회전한다. 이것은 유도모터의 회전자에 대향하는 전류를 유도하며, 실제로 모터의 2차 권선은 외부 임피던스를 통해 단락되거나 닫힐 때 발생한다. 회전 자속은 회전자의 권선에 자기 전속을 유도한다. 그것은 변압기의 2차 권선에 유도된 전류와 유사한 방식으로 전류를 흐르게 한다. 회전자 권선의 전류는 회전자에서 고정자 필드에 반응하는 자기장을 생성한다. 렌츠의 법칙으로 생성된 자기장의 방향은 회전자 권선을 통한 전류의 변화에 반대하는 것과 같다. 회전자 권선에서 유도 전류의 원인은 회전하는 고정자 자기장이다. 회전자 권선 전류의 변화에 맞서기 위해 회전자는 회전하는 고정자 자기장의 방향으로 회전하기 시작한다. 회전자는 유도 회전자 전류와 토크의 크기가 하중의 균형을 이룰 때까지 가속한다. 회전자의 속도가 동기 속도 이하로 내려가면, 회전자 자계에서 회전 속도는 올라간다. 회전자에 유도된 자기장의 회전 속도와 고정자의 회전 방향에서 필드 회전 속도 사이의 비율을 슬립이라고 한다. 하중이 늘어나면 속도가 내려가고 슬립이 증가하여 부하를 돌리는데 충분한 토크가 발생한다. 이러한 이유로, 유도모터는 때때로 비동기 모터라고 한다. 유도모터는 유도 발전기로 사용할 수 있으며 직선 운동을 직접 생성할 수 있는 직선형 유도모터를 형성하기 위해 전개될 수 있다.[1]
구조
유도모터의 정류자는 회전자를 관통하는 자기장을 유도하기 위해 공급 전류를 운반하는 자극으로 구성된다. 자기장의 분포를 최적화하기 위해 권선은 N극과 S극의 동일한 수를 지닌 자계와 고정자 슬롯 주위에 분포된다. 유도모터는 가장 일반적으로 단상 또는 3상 전원으로 작동하지만, 2개의 모터가 존재한다. 단상모터는 시동할 때 회전 필드를 생성하기 위해 몇 가지 메커니즘이 필요하다. 케이지 유도모터 회전자의 도체 막대기는 보통 소음을 저감하기 위해 왜곡한다.[1]
종류
단상유도모터
3상유도모터
3상유도모터는 서로 다른 위상을 가진 3개의 교류를 이용해 전자석을 만들어 동력을 얻는 장치이다.[2]
장점
- 유도모터는 별다른 기교 없이 고정된 주파수를 가지는 상용 전원을 그냥 직입하더라도 탈조 없이 무난하게 회전력을 얻을 수 있다. 유도모터는 값비싼 전용 모터 드라이브를 사용하지 않아도 되며 부하가 있는 상태에서의 기동이 수월하다.
- 유도모터의 회전자는 그냥 묵직한 쇳덩어리이거나 코일 덩어리일 뿐이다. 그래서 기계적 강도 확보와 제작이 용이하고 모터 운전을 급하게 중지시키더라도 영구자석 모터와는 달리 회전자의 자화가 스스로 풀리므로 역기전력 걱정을 할 필요가 없어서 안전하다. 구동 시 별도의 드라이브가 필요하지 않으며 드라이브를 쓰더라도 비교적 센서 의존도가 낮고, 영구자석이 들어가지 않아 구조가 단순하고 제작이 쉽기 때문에 시스템의 가격이 저렴해질 수 있다.
- 일반적인 유도모터 제작에는, 고온에 취약하고 영구적인 성능 감소를 일으킬 수 있는 자석이 사용되지 않으므로 코일만 견디어 주면 열에 의한 성능 문제가 적고 과부하에 강하다.
- 단순한 구조와 우수한 전기적, 기계적 특성이 결합하여 대용량 모터 제작 및 구동이 영구자석 모터에 비해 수월하다. 여러 가지 사용에 유용한 특성이 있어 전기 기관차, 전기자동차, 엘리베이터 등 많은 애플리케이션에 유도모터가 적용되고 있다.[3]
단점
- 구동 원리상 회전자에도 단락 전류가 흐르기 때문에 이로 인한 손실이 추가로 발생한다. 영구자석 모터는 영구자석 자체가 자속원이기 때문에 회전자에 전류가 흐를 필요가 없다.
- 유도모터는 저속에서 토크가 낮고 최대 속도 근처에서 최대 토크가 나오며, 해당 지점 뒤부터 속도가 올라갈수록 토크가 급강하하는 형태의 성능 곡선이 그려진다. 그러므로 최대 출력 영역이 너무 좁고 고속 동작이 어려우며 막상 토크가 가장 필요할 초기 구동 시에 최대 토크를 낼 수가 없다는 결점이 있다. 이 단점은 어디까지나 주파수가 고정된 상용 전원을 사용하는 경우의 이야기로, 이 문제점은 모터 드라이브의 제어로 거의 완벽하게 보완이 가능하다. 특히 전기자동차의 성능과 인터넷에 흔히 있는 유도모터 특성이 상반되게 설명되어 혼란을 빚는 경우가 많은데 전기자동차의 모터는 모터 드라이브의 제어를 받기 때문에 이야기가 완전히 다르다. 모터 드라이브가 있으면 전원의 주파수와 전압부터 슬립 주파수에 심지어는 자속까지 모두 제어가 가능하기 때문이다. 제어를 받으면 유도모터도 직류모터와 유사한 성능 곡선과 특성으로 운전할 수 있다.
- 적당히 구동하는 것은 동기모터보다 쉬운데 막상 제대로 제어를 걸려고 하면 꽤 번거롭다. 왜냐하면 동기모터는 상수로 고정되는 특성이 많아서 대체로 전기자 전류와 회전수만 신경 쓰면 되지만 유도모터는 계자 자속부터 전기자 전류, 회전수, 주파수 모두에 영향을 받기 때문에 특성의 변화가 심하고 성능에 영향을 주는 변수가 동기모터에 비해 훨씬 더 많다. 이런 점들을 모두 고려해서 제어를 해줘야 하므로 특성을 예측하고 시험하기가 동기모터보다 어렵다.[3]
각주
같이 보기