"냉각시스템"의 두 판 사이의 차이
(새 문서: '''냉각시스템'''(cooling system)은 전기구동 자동차의 배터리의 과열방지를 위한 시스템 및 각종 차량용 모터, 모터 드라이버 등의 효율적인...) |
잔글 |
||
5번째 줄: | 5번째 줄: | ||
전기자동차와 하이브리드 자동차는 구동을 위한 대용량의 배터리가 요구되고, 배터리 발열에 대한 냉각기술의 필요성도 증가한다. 배터리 냉각시스템의 기계적 오류가 발생하면 자동차의 화재 또는 배터리 셀의 온도 불균형 증가로 배터리의 수명이 감소하거나 배터리 팩의 열폭주가 나타날 수 있다. 그러므로 안정성을 고려하여 동작 허용 온도를 55 °C 이하로 제한한다. | 전기자동차와 하이브리드 자동차는 구동을 위한 대용량의 배터리가 요구되고, 배터리 발열에 대한 냉각기술의 필요성도 증가한다. 배터리 냉각시스템의 기계적 오류가 발생하면 자동차의 화재 또는 배터리 셀의 온도 불균형 증가로 배터리의 수명이 감소하거나 배터리 팩의 열폭주가 나타날 수 있다. 그러므로 안정성을 고려하여 동작 허용 온도를 55 °C 이하로 제한한다. | ||
+ | |||
+ | T. Yiksel과 J. Michalek은 배터리 냉각과 수명과의 관계를 규명하였고, H. Teng 등은 이로 인해 HEV/EV용 배터리의 열적 관리 시스템을 이용하여 온도의 균일성 및 냉각 성능을 | ||
+ | 을 제안하였다. 네이더 자바니(N. Javani) 등은 PCM(phase change materials)방식을 이용하여 배터리 냉각방식을 제시하였고, H. Park은 공냉식을 사용한 하이브리드 전기 자동차에 리튬-이온 배터리 냉각을 제안하였다. 또한 나노입자유동을 이용하여 전기자동차 배터리용 냉각수로 사용하는 기술도 개발되고 있다. 저밀도 에너지 배터리에서는 공냉식과 수냉식이 모두 가능 하나, 고밀도 배터리에서는 냉각수를 활용한 수냉식 시스템이 가장 효율적인 열관리 방법이다. 고밀도 전기 배터리의 무게는 차량에 따라 250~500 kg으로 무겁고 이에 비례하여 부피도 증가한다. 효율적인 공간활용을 위해 배터리 셀을 직사각형 형태로 만들어 적층한 스택을 사용하는 방식이 많아지고 있다. | ||
+ | |||
+ | == 배터리팩 냉각방식 == | ||
+ | * 공랭식(空冷式) : 외부 공기를 유입시켜 냉각시키는 방식이다. 가장 쉽고 간단한 방법이지만, 수랭식이나 유랭식에 비해 냉각 효율이 낮은 편이다. | ||
+ | * 수랭식(水冷式) : 물을 이용하여 냉각시키는 방식이다. | ||
+ | - 직접 수랭식 : 배터리셀 사이에 냉각 유로를 배치하여 냉각시키는 방식이다. 냉각 효율이 높지만 제조원가가 비싸지고 배터리팩의 무게와 부피가 커진다. | ||
+ | - 간접 수랭식 : 배터리셀 사이에 방열핀을 삽입하고 방열핀의 끝단을 외부 히트싱크(heat sink)에 연결시켜 냉각하는 방식이다. 가격 대비 성능이 좋아서 간접 수랭식 방식을 많이 사용한다. | ||
+ | * 유랭식(油冷式): 기름을 이용하여 냉각시키는 방식이다. 수랭식의 경우 증발된 물을 보충할 때 불순물이 들어갈 수 있고, 물에 의한 부식, 겨울에 물이 얼어서 동파되는 문제 등이 있는데, 이것을 해결하기 위해 물 대신 기름을 사용한 방식이다. | ||
+ | |||
== 참고자료 == | == 참고자료 == |
2021년 4월 27일 (화) 11:49 판
냉각시스템(cooling system)은 전기구동 자동차의 배터리의 과열방지를 위한 시스템 및 각종 차량용 모터, 모터 드라이버 등의 효율적인 성능 향상을 위한 시스템이다. 배터리 전력의 사용은 자동차의 주행시간 지속능력 및 주행 능력과 직접적인 연관에 있어서 전기구동 자동차에 적용되는 열관리 시스템은 기존의 엔진구동력을 이용하는 고효율 시스템이 필요하다.
개요
하이브리드 및 전기 자동차에 사용되는 배터리는 높은 파워 사용으로 인해 많은 열이 발생하게 된다. 따라서 배터리 냉각 시스템이 필수적인데, 배터리의 최대 온도와 최소 온도의 차이와 최고 온도는 배터리의 내구성과 안정성을 크게 좌우하는 요소이다. 그 때문에 하이브리드/전기 자동차 배터리는 냉각 시스템으로 배터리의 온도를 최대한 균일하게 하고 과하게 온도가 올라가는 것을 막아야 한다.
전기자동차와 하이브리드 자동차는 구동을 위한 대용량의 배터리가 요구되고, 배터리 발열에 대한 냉각기술의 필요성도 증가한다. 배터리 냉각시스템의 기계적 오류가 발생하면 자동차의 화재 또는 배터리 셀의 온도 불균형 증가로 배터리의 수명이 감소하거나 배터리 팩의 열폭주가 나타날 수 있다. 그러므로 안정성을 고려하여 동작 허용 온도를 55 °C 이하로 제한한다.
T. Yiksel과 J. Michalek은 배터리 냉각과 수명과의 관계를 규명하였고, H. Teng 등은 이로 인해 HEV/EV용 배터리의 열적 관리 시스템을 이용하여 온도의 균일성 및 냉각 성능을 을 제안하였다. 네이더 자바니(N. Javani) 등은 PCM(phase change materials)방식을 이용하여 배터리 냉각방식을 제시하였고, H. Park은 공냉식을 사용한 하이브리드 전기 자동차에 리튬-이온 배터리 냉각을 제안하였다. 또한 나노입자유동을 이용하여 전기자동차 배터리용 냉각수로 사용하는 기술도 개발되고 있다. 저밀도 에너지 배터리에서는 공냉식과 수냉식이 모두 가능 하나, 고밀도 배터리에서는 냉각수를 활용한 수냉식 시스템이 가장 효율적인 열관리 방법이다. 고밀도 전기 배터리의 무게는 차량에 따라 250~500 kg으로 무겁고 이에 비례하여 부피도 증가한다. 효율적인 공간활용을 위해 배터리 셀을 직사각형 형태로 만들어 적층한 스택을 사용하는 방식이 많아지고 있다.
배터리팩 냉각방식
- 공랭식(空冷式) : 외부 공기를 유입시켜 냉각시키는 방식이다. 가장 쉽고 간단한 방법이지만, 수랭식이나 유랭식에 비해 냉각 효율이 낮은 편이다.
- 수랭식(水冷式) : 물을 이용하여 냉각시키는 방식이다.
- 직접 수랭식 : 배터리셀 사이에 냉각 유로를 배치하여 냉각시키는 방식이다. 냉각 효율이 높지만 제조원가가 비싸지고 배터리팩의 무게와 부피가 커진다. - 간접 수랭식 : 배터리셀 사이에 방열핀을 삽입하고 방열핀의 끝단을 외부 히트싱크(heat sink)에 연결시켜 냉각하는 방식이다. 가격 대비 성능이 좋아서 간접 수랭식 방식을 많이 사용한다.
- 유랭식(油冷式): 기름을 이용하여 냉각시키는 방식이다. 수랭식의 경우 증발된 물을 보충할 때 불순물이 들어갈 수 있고, 물에 의한 부식, 겨울에 물이 얼어서 동파되는 문제 등이 있는데, 이것을 해결하기 위해 물 대신 기름을 사용한 방식이다.
참고자료
- 하이브리드/전기 자동차용 수냉식 배터리 셀의 냉각성능에 관한 수치 해석적 연구(응용논문) - https://www.koreascience.or.kr/article/JAKO201616853628755.pdf
- 하이브리드/전기 자동차 배터리 냉각 시스템의 냉각판내 냉각수 유동 패턴이 냉각 특성에 미치는 영향 - file:///C:/Users/sms/Downloads/KSAEFCS_20131120_1268-1269.pdf
같이 보기