알루미늄
알루미늄(Aluminum)은 주기율표에서 원자 번호 13번에 해당하는 화학 원소로써 원소 기호는 Al, 원자량은 26.981g/mol, 녹는점은 660.32℃, 끓는점 2519℃, 밀도는 2.7g/cm3이다. 은백색의 가볍고 무른 금속으로. 지각 구성 원소로 8%를 차지하며 이는 철보다도 많은 양이며, 산소와 규소 다음으로 세번 째 많은 양이다.
금속 중 밀도가 낮은 금속에 속한다. 순수한 알루미늄은 반응성이 매우 좋다. 표면에서 발생하는 부동화(passivation) 현상으로 인해 외부 환경에 따른 부식에 저항성을 가진다. 금속공학 분야에서 알루미늄의 가장 큰 가치는 강도나 외관이 아닌 가벼움이다. 가볍고 연성이 높아 공정이 쉬우며 다양한 금속들과 합금을 형성한다. 따라서 다양한 물성의 금속 소재들을 구현 가능하다는 측면에서 널리 사용된다. 우리 일상생활에서 흔히 발견되는 값싼 제품들에서부터 고부가가치의 제품들에 이르기까지 다양한 곳에 사용되고 있다.
개요
알루미늄은 산소, 실리콘과 함께 지구의 지각을 이루는 주 구성 원소 중 하나이다. 지구상에 다량으로 널리 존재하는 데 클라크수는산소·규소에 이어 제3위이며 금속원소로는 제1위이다. 각종 금속의 알루미노규산염으로서 암석·토양의 주성분이다. 광석으로는 장석(長石)·운모·빙정석(氷晶石)·반토(礬土)·도토(陶土) 등이 있으며 산화물로는 루비(홍옥)·사파이어(청옥)·강옥(鋼玉:코런덤) 등 보석도 많다.
은백색의 부드러운 금속으로 전성(展性)·연성(延性)이 커서 박(箔)이나 철사로 만들 수 있다. 성질은 순도에 따라 다르며 전기의 양도체이며 비저항은 구리의 약 1.6배이다. 비중으로 보아 전형적인 경금속이다. 공기 중에 방치하면 산화물의 박막(薄膜)을 생성하여 광택을 잃지만 내부까지 침식되지는 않는다. 공기 중에서 녹는점 가까이 가열하면 흰 빛을 내며 연소하여 산화알루미늄이 된다. 이때 높은 온도가 되므로 분말을 써서 금속의 야금(冶金)이나 용접을 한다.
질소·황·탄소 등과 직접 화합하여 질소화물·황화물·탄화물이 되며, 할로겐과도 작용하여 염화물·브롬화물 등을 만든다. 산에 녹아 염을 만들지만 진한 질산에는 잘 침식되지 않고 알칼리에 녹아 수소를 발생하며 알루민산염이 된다.
알루미늄과 전기차
알루미늄은 최근 태양광 모듈을 구성하는 틀과 각 태양광 패널들을 고정하는 구조물 등에 쓰이는 소재로 주목받고 있다. 풍력에서도 '나셀(Nacelle)’이라고 하는 회전력을 전기 에너지로 전환하는 발전 장비와 풍력 타워를 구성하는 물질로 쓰이고 있다. 전기차에도 내연차의 4배 이상의 알루미늄이 사용된다. 최근 각광받는 전기차와 신재생 발전 설비 도입으로 수요 급증이 예상된다는 의미다.
자동차 업계에서 차량 경량화 기술에 대한 요구가 증가하고 있는 가운데, 알루미늄 소재는 기존 철강 강판의 1/3 무게로 강성과 안전성까지 갖춘 가장 적합한 대체 재로 주목받고 있다. 알루미늄 압연 제품 제조기업 노벨리스의 발표에 따르면, 미국 자동차 제조업체 포드(Ford)의 F-150 픽업트럭의 경우 전체 차체 내 알루미늄을 92%, 철강을 8% 비율로 사용해 기존 모델보다 중량을 300 kg 이상 줄였다. LS전선은 알루미늄으로 전선을 만들고 있다. 알루미늄 도체 전선은 기존 구리 전선보다 40% 이상 가볍다. 전기차 1대에 들어가는 전선의 무게는 25㎏ 선이다. 알루미늄 전선으로 바꾸면 15㎏ 안팎까지 무게가 줄어든다. 일본 전장업계에서도 알루미늄 전선 생산라인을 구축하고 있다.
글로벌 컨설팅 업체 더커 월드와이드가 2017년 7월 발표한 리포트에 따르면, 향후 10년간 북미 자동차 시장 내 경량 트럭 및 SUV, 전기차 부분을 중심으로 알루미늄 소재 도입이 급속히 확대될 것으로 예측된다. 북미 시장의 경우 2020년까지 자동차용 알루미늄 수요는 2012년 대비 60% 성장한 약 398만 톤에 달하고, 2028년까지 차량당 평균 알루미늄 도입량은 256 kg 수준이 될 것으로 예측된다.
역사
알루미늄은 산소와 규소 다음으로 지구상에 많은 원소이나 알루미늄의 비교적 큰 산화성 때문에 다른 금속에 비해 늦게 분리되었다. 고대에는 산화알루미늄 등의 산화물 형태로 알려져 있다가 전기분해로 정제기술이 개발되면서 18세기 때 처음으로 순수하게 분리되었다. 1825년 덴마크 화학자인 한스 크리스티안 외른스테드에 의해 발견되었으며 알루미늄(Al)은 라틴어인 alumen(alum)에서 유래하였다.
동위원소
자연계에서 존재하는 알루미늄의 동위 원소로는 27Al이 100% 존재하고 있으며 핵융합 과정을 통하여 형성된 원소이다.
23Na + 4He → 27Al 자연계에서 미량으로 존재하는 26Al은 우주 광선을 통해 생성되며 반감기는 71만 7천 년이다. 생성과정은 우주에서 강한 우주 광선으로 인해 속도가 매우 빠른 양성자가 날아와 26Mg의 중성자 한개를 방출하고 대신 양성자 한개가 들어가서 결합되면서 생성된다.
지금은 우주선으로 인해 미량 생성되므로 27Al의 10 과거 태양계 역사 초기에 매우 풍부하게 존재했다.
14N + 4He → 18F 18F + 4He → 22Na 22Na + 4He → 26Al
왜냐하면 26Al은 항성의 핵융합 과정을 통하여 생성된 원소이며 현재 지구상에 매우 풍부하게 존재하는 26Mg에 그 증거가 있다. 과거 26Al은 초창기 지구에 많이 존재했던 60Fe과 함께 지구의 용암 바다의 오랜 기간 유지와 태양계 초창기 역사에 중요한 역할을 한 원소이다. 지금은 비록 우주 광선을 통하여 매우 미량으로 존재하고 있지만 26Al의 태양계 초창기 역사에 매우 많은 양이 존재했었고 매우 중요한 역할을 하였다는 것과 우리 태양계에 중원소가 풍부하다는 이유로는 초신성 폭발이 존재했다는 사실은 매우 중요한 사실로 남을 것이다.
특징
참고자료
같이 보기