"배터리"의 두 판 사이의 차이
18번째 줄: | 18번째 줄: | ||
== 종류 == | == 종류 == | ||
− | * | + | * 납축전지 |
− | :납축전지는 납과 황산을 전극과 전해질로 사용하는 전지로서, 충전 방전을 통해 반복해 사용할 수 있는 2차 전지이다. 1859년 프랑스의 플랑테(Planté)가 개발한 가장 오래된 형태의 2차 전지로 현재 자동차에 널리 활용되고 있다. 이산화납 전극과 납 전극이 황산 전해질에 담겨 있는 구조를 하고 있다. 하나의 단위 전지에서 2V의 전압이 생성되는데, 일반적으로 6개의 단위 전지를 직렬로 연결해 전체 납축전지를 구성하므로 전체적으로 12V의 출력 전압을 얻을 수 있다. 구형 납축전지는 밀폐상태가 완벽하지 않아 사용 시간이 지남에 따라 황산을 보충해 주어야 했지만, 현재 시판되는 납축전지는 내부가 완전히 밀폐되어 황산 보충의 필요성이 없고 누출의 위험도 거의 없다.충전 과정에서는 방전 반응의 역반응이 각각의 전극에서 일어난다. 방전 반응의 전체 반응은 아래와 같고, | + | :납축전지는 납과 황산을 전극과 전해질로 사용하는 전지로서, 충전 방전을 통해 반복해 사용할 수 있는 2차 전지이다. 1859년 프랑스의 플랑테(Planté)가 개발한 가장 오래된 형태의 2차 전지로 현재 자동차에 널리 활용되고 있다. 이산화납 전극과 납 전극이 황산 전해질에 담겨 있는 구조를 하고 있다. 하나의 단위 전지에서 2V의 전압이 생성되는데, 일반적으로 6개의 단위 전지를 직렬로 연결해 전체 납축전지를 구성하므로 전체적으로 12V의 출력 전압을 얻을 수 있다. 구형 납축전지는 밀폐상태가 완벽하지 않아 사용 시간이 지남에 따라 황산을 보충해 주어야 했지만, 현재 시판되는 납축전지는 내부가 완전히 밀폐되어 황산 보충의 필요성이 없고 누출의 위험도 거의 없다. 충전 과정에서는 방전 반응의 역반응이 각각의 전극에서 일어난다. 방전 반응의 전체 반응은 아래와 같고, 황산납 전극이 이산화납 및 납 전극으로 전환된다. 납축전지는 다른 2차 전지에 비교해 경제적이지만 전지의 용량에 비교해 무거운 것이 단점이다. 납을 사용하기 때문에 환경 오염의 문제가 있다는 단점도 있다. 황산의 누출 위험성만 없다면 다른 2차 전지들보다 안정적이다. 황산은 수십 년 동안 전 세계적으로 산업적으로 생산되고 사용되는 화학 물질 중 생산량 1위를 차지하고 있는데 축전지에 사용되는 양도 상당할 것이다. 납축전지는 자동차의 시동 및 조명 등 전자기기의 전원으로 널리 사용되고 있다. 골프용 카트, 지게차 등 전지의 무게가 중요하지 않은 용도로도 활용되고 있다. 산업용으로는 전력 저장 시스템, 전자 기기 및 통신 설비의 예비 전원 등으로 활용되고 있다. 전지의 무게가 문제 되는 용도에서는 최근 리튬 이온 전지로 대체되는 추세에 있다. <ref name="납축전지 네이버 지식백과"> 〈[https://terms.naver.com/entry.nhn?docId=5663051&cid=62802&categoryId=62802 납축전지]〉, 《네이버 지식백과》</ref> |
+ | |||
+ | * 니켈 배터리 | ||
+ | :니켈 수소 배터리는 니켈 카드뮴 배터리를 개선한 배터리다. 음극에 니켈, 양극에 수소 흡장 합금을 사용하고 전해질로는 80바 이상의 압력으로 압축된 수소를 사용하는데 단위 부피당 에너지 밀도가 니켈 카드뮴 배터리의 두 배에 가까워 고용량으로 만들 수 있다. 지나치게 방전되거나 충전돼도 성능이 크게 떨어지지 않고 자연적으로 충전 용량이 줄어드는 메모리 현상도 적어 휴대전화나 노트북, 핸디캠 등에 널리 사용됐다. 단위 부피당 용량이 커서 초창기 전기차나 하이브리드 자동차에도 두루 쓰였다. 1990년대 중반까지 니켈 카드뮴과 니켈 수소 배터리 시장을 주도한 건 일본이었다. 당시 일본의 시장 점유율은 70%를 넘었다. 세계 최초의 혼합형 자동차 토요타 프리우스가 니켈 수소 배터리를 사용했다. 니켈 수소 배터리에도 단점이 있다. 메모리 현상이 니켈 카드뮴 배터리보다 적긴 하지만 전혀 없진 않아서 완전히 방전하고 충전하지 않으면 용량이 줄어든다. 오래 사용하지 않으면 자연적으로 방전되기도 한다. 주행거리가 무엇보다 중요한 전기차에 이건 치명적인 단점이다. 배터리 용량이 자연적으로 줄어든다는 건 그만큼 주행거리가 줄어든다는 것을 의미하기 때문이다. 그래서 이를 개선한 리튬 이온 배터리가 등장했다.<ref name="니켈 배터리 모터트렌드">서인수, 〈[https://www.motortrendkorea.com/sub/view.html?no=3950&cate1Name=ISSUE 배터리가 뭐에요?]〉, 《모터트렌드》, 2019-06-19</ref> | ||
+ | |||
== 용어 == | == 용어 == |
2020년 8월 6일 (목) 10:16 판
배터리(battery)는 전기를 담아두는 부품을 일컫는 영어 표현이며, 휴대용 전자기기의 발달로 인해 일상에 밀접한 용어가 되었다. 넓은 범위에서는 전지, 좁은 범위에서는 축전지를 뜻하는 말이다.
개요
과거에는 일본식 표현인 밧데리(バッテリー)라고 불렸다. 로케트 밧데리라는 회사의 영향으로 널리 쓰이다가 워크맨 시절에 건전지, 충전지, 껌전지 등으로 순화되어 불리더니, 리튬 이온 배터리팩이 널리 쓰이면서 '배터리'란 용어로 바뀌어 쓰이게 되었다. 하지만 여전히 밧데리라는 표현도 종종 쓰인다.
배터리의 어원은 사실 '포병부대'에서 비롯되었다. 프랑스어가 어원이며 "때리다"는 뜻의 "battre"에서 포병부대라는 뜻의 "batterie"가 나왔고, battle과 같은 어원을 가진다. 벤자민 플랭클린이 정전기를 담는 라이덴 병(Leyden jar)의 성능 향상을 위해 4개를 한 부대로 지정하며 배터리라 불렀는데. "같은 기능을 하는 조직의 모음"이란 뜻으로 썼으나 사람들은 전기공급장치라 읽게 된 것이 오늘날까지 이어지게 된 것이다.[1][2]
역사
1780년경 이탈리아 볼로냐 대학의 생물학 교수였던 루이지 갈바니(Luigi Aloisio Galvani, 1737~1798)는 개구리를 해부하다가 개구리의 뒷다리에 황동 철사를 대었더니 꿈틀거리는 것을 목격한다. 개구리 다리가 어떤 자극을 받으면 전기가 흘러 근육이 움직인다며, 그 에너지를 동물전기라고 이름 짓고 1791년 발표하였다. 갈바니가 주장한 동물전기를 본 이탈리아의 알레산드로 볼타(1745~1827)가 동물전기에 의문을 품고 있다가 1800년 실험을 통해 동물전기의 오류를 증명하였다. 이 과정에서 전기가 생기는 원리를 발견하고 1800년 구리와 아연을 이용해 세계 최초의 전기 저장 장치인 볼타전지가 탄생하게 되었다.
그런데, 1932년 독일의 케네디가 이라크 바그다드 지역에 있는 후유트라브 유적에서 기원전 3세기(약 2000년 전)부터 사용된 것으로 보이는, 바그다드 전지가 발굴되었다. 바그다드 전지는 중앙부에 쇠막대를 박아놓은 구리 통을 도자기로 된 항아리가 감싸는 구조를 하고 있다. 구리 통에 쇠막대가 충분히 잠기게끔 전해질을 넣고 둘을 전선으로 연결하면 전기가 흐르게 할 수 있었고 전해질로는 술이나 식초 등을 넣은 것으로 추정된다. 볼타 전지와 같은 원리로 작동하는 바그다드 전지는 금이나 은을 도금하는 용도로 사용되었을 것으로 추정하고 있다.[3][4]
특징
배터리는 전기 장치에 전원을 공급하기 위해 물리적 또는 화학적 작용을 통해 전기 에너지를 발생, 공급시키는 장치이다. 가장 흔하게 볼 수 있는 화학 전지는 두 가지 금속의 이온화도 차이에서 오는 전위차를 이용한다. 이온의 양이 많을수록 흘려보낼 수 있는 전하의 양도 많기 때문에 같은 종류인 전지의 용량은 크기에 거의 비례한다. 배터리는 충전 가능 여부에 따라 충전이 불가능한 일차 전지와 충전이 가능한 이차 전지로 나뉜다. 일차 전지는 전지 내의 전기화학 반응이 비가역적이기 때문에 한 번 쓰고 버려야 하는 일회용 전지를 말한다. 일차 전지는 전지 내에 전류를 흘려 줌으로써 방전 시에 일어난 화학 반응을 역으로 되돌리는 것이 불가능하다. 화학반응자들(리튬 전지에서의 리튬과 같은 원소들)은 전지에 역방향의 전류를 걸어 준다고 해서 본래의 위치로 되돌아가지 않으며, 따라서 전지의 용량이 회복되지도 않는다. 일차 전지는 양극과 음극 중 어느 한쪽, 또는 양쪽 모두를 소진함으로써 수명을 다한다. 이차 전지(축전지)는 외부의 전기 에너지를 화학 에너지의 형태로 바꾸어 저장해 두었다가 필요할 때에 전기를 만들어내고 재사용할 수 있는 장치를 말한다. 주로 쓰이는 이차 전지는 납 축전지, 니켈-카드뮴(NiCd), 리튬 이온 전지(Li-ion), 리튬 이온 폴리머 전지(Li-ion polymer) 등이 있다. 이차 전지는 일차 전지가 있어야 충전이 가능하기 때문에 이차라는 이름이 붙었다. 일차 전지에 비해 가격이 비싸지만 한 번 쓰고 버리는 일차 전지에 비해 이차는 재사용 할 수 있어 경제적이고 환경친화적이다. 일차 전지는 장기간 에너지를 보존해야 하는 경우에 적합하다. 이차 전지를 사용하면 자연 방전에 의한 손실이 장치 자체를 유지하는데 필요한 손실보다 커짐에 따라 비경제적이고 수일에서 수 주 내에 교환해야 하게 된다. 비축전지는 전지를 구성하는 양극, 음극, 전해질과 같은 구성 원소들을 분리해서 보관하고 있다가 전지를 써야 할 때 즉시 결합하여 사용하는 방식으로, 수십 년 이상의 긴 시간 동안 에너지를 보존하기 위해 제작된다. 이러한 전지는 비싸지만, 군수품 등에 이용될 수 있는데, 군수품은 장시간 보관하다가 급히 사용하는 경우가 있기 때문이다. [5][6][7]
종류
- 납축전지
- 납축전지는 납과 황산을 전극과 전해질로 사용하는 전지로서, 충전 방전을 통해 반복해 사용할 수 있는 2차 전지이다. 1859년 프랑스의 플랑테(Planté)가 개발한 가장 오래된 형태의 2차 전지로 현재 자동차에 널리 활용되고 있다. 이산화납 전극과 납 전극이 황산 전해질에 담겨 있는 구조를 하고 있다. 하나의 단위 전지에서 2V의 전압이 생성되는데, 일반적으로 6개의 단위 전지를 직렬로 연결해 전체 납축전지를 구성하므로 전체적으로 12V의 출력 전압을 얻을 수 있다. 구형 납축전지는 밀폐상태가 완벽하지 않아 사용 시간이 지남에 따라 황산을 보충해 주어야 했지만, 현재 시판되는 납축전지는 내부가 완전히 밀폐되어 황산 보충의 필요성이 없고 누출의 위험도 거의 없다. 충전 과정에서는 방전 반응의 역반응이 각각의 전극에서 일어난다. 방전 반응의 전체 반응은 아래와 같고, 황산납 전극이 이산화납 및 납 전극으로 전환된다. 납축전지는 다른 2차 전지에 비교해 경제적이지만 전지의 용량에 비교해 무거운 것이 단점이다. 납을 사용하기 때문에 환경 오염의 문제가 있다는 단점도 있다. 황산의 누출 위험성만 없다면 다른 2차 전지들보다 안정적이다. 황산은 수십 년 동안 전 세계적으로 산업적으로 생산되고 사용되는 화학 물질 중 생산량 1위를 차지하고 있는데 축전지에 사용되는 양도 상당할 것이다. 납축전지는 자동차의 시동 및 조명 등 전자기기의 전원으로 널리 사용되고 있다. 골프용 카트, 지게차 등 전지의 무게가 중요하지 않은 용도로도 활용되고 있다. 산업용으로는 전력 저장 시스템, 전자 기기 및 통신 설비의 예비 전원 등으로 활용되고 있다. 전지의 무게가 문제 되는 용도에서는 최근 리튬 이온 전지로 대체되는 추세에 있다. [8]
- 니켈 배터리
- 니켈 수소 배터리는 니켈 카드뮴 배터리를 개선한 배터리다. 음극에 니켈, 양극에 수소 흡장 합금을 사용하고 전해질로는 80바 이상의 압력으로 압축된 수소를 사용하는데 단위 부피당 에너지 밀도가 니켈 카드뮴 배터리의 두 배에 가까워 고용량으로 만들 수 있다. 지나치게 방전되거나 충전돼도 성능이 크게 떨어지지 않고 자연적으로 충전 용량이 줄어드는 메모리 현상도 적어 휴대전화나 노트북, 핸디캠 등에 널리 사용됐다. 단위 부피당 용량이 커서 초창기 전기차나 하이브리드 자동차에도 두루 쓰였다. 1990년대 중반까지 니켈 카드뮴과 니켈 수소 배터리 시장을 주도한 건 일본이었다. 당시 일본의 시장 점유율은 70%를 넘었다. 세계 최초의 혼합형 자동차 토요타 프리우스가 니켈 수소 배터리를 사용했다. 니켈 수소 배터리에도 단점이 있다. 메모리 현상이 니켈 카드뮴 배터리보다 적긴 하지만 전혀 없진 않아서 완전히 방전하고 충전하지 않으면 용량이 줄어든다. 오래 사용하지 않으면 자연적으로 방전되기도 한다. 주행거리가 무엇보다 중요한 전기차에 이건 치명적인 단점이다. 배터리 용량이 자연적으로 줄어든다는 건 그만큼 주행거리가 줄어든다는 것을 의미하기 때문이다. 그래서 이를 개선한 리튬 이온 배터리가 등장했다.[9]
용어
법률 용어
영미권 법률에서는 배터리(battery)가 '폭행'(구타)을 의미하는 단어이다.
군사 용어
군함의 포대(砲臺)나 포탑(砲塔), 또는 지상의 포대(고정포대 포함)나 포병의 중대 단위 부대인 포대(砲隊)를 지칭한다. 여기서 '중대'를 지칭하는 군사 용어에는 크게 battery(포대), squadron(기병 중대), company(나머지 병과) 등이 있다.
야구 용어
투수와 포수를 묶어서 말할 때 쓰이는 단어이다.
각주
- ↑ 배터리 나무위키 - https://namu.wiki/w/%EB%B0%B0%ED%84%B0%EB%A6%AC
- ↑ 전지 위키백과 - https://ko.wikipedia.org/wiki/%EC%A0%84%EC%A7%80
- ↑ 삼성SDI, 〈(배터리 여행) 배터리의 역사: 동물전기와 볼타전지〉, 《네이버 블로그》, 2017-01-25
- ↑ 몽당버터, 〈기원전 3세기부터 있었다는 '바그다드 전지'에 대한 잡썰〉, 《네이버 블로그》, 2019-03-26
- ↑ 전지 나무위키 - https://namu.wiki/w/%EC%A0%84%EC%A7%80(%EC%9E%A5%EC%B9%98)
- ↑ 일차 전지 위키백과 - https://ko.wikipedia.org/wiki/%EC%9D%BC%EC%B0%A8_%EC%A0%84%EC%A7%80
- ↑ 이차 전지 위키백과 - https://ko.wikipedia.org/wiki/%EC%9D%B4%EC%B0%A8_%EC%A0%84%EC%A7%80
- ↑ 〈납축전지〉, 《네이버 지식백과》
- ↑ 서인수, 〈배터리가 뭐에요?〉, 《모터트렌드》, 2019-06-19
참고자료
- 배터리 나무위키 - https://namu.wiki/w/%EB%B0%B0%ED%84%B0%EB%A6%AC
- 전지 나무위키 - https://namu.wiki/w/%EC%A0%84%EC%A7%80(%EC%9E%A5%EC%B9%98)
- 전지 위키백과 - https://ko.wikipedia.org/wiki/%EC%A0%84%EC%A7%80
- 일차 전지 위키백과 - https://ko.wikipedia.org/wiki/%EC%9D%BC%EC%B0%A8_%EC%A0%84%EC%A7%80
- 이차 전지 위키백과 - https://ko.wikipedia.org/wiki/%EC%9D%B4%EC%B0%A8_%EC%A0%84%EC%A7%80
- 〈납축전지〉, 《네이버 지식백과》
- 삼성SDI, 〈(배터리 여행) 배터리의 역사: 동물전기와 볼타전지〉, 《네이버 블로그》, 2017-01-25
- 몽당버터, 〈기원전 3세기부터 있었다는 '바그다드 전지'에 대한 잡썰〉, 《네이버 블로그》, 2019-03-26
같이 보기
|