"소리"의 두 판 사이의 차이
(→높낮이) |
(→세기) |
||
25번째 줄: | 25번째 줄: | ||
===세기=== | ===세기=== | ||
+ | 소리의 세기는 그 파동이 얼마나 큰 압력을 갖고 있느냐로 계산되며 '''음압'''이라고 표현되고 단위는 [[데시벨]](dB)을 사용한다. 데시벨은 절대적인 기준 수치가 아닌 상대적인 값이며 0dB를 기준으로 10dB가 증가할 때마다 그 소리의 세기, 즉 음압은 10의 거듭제곱 꼴로 커진다. 예를 들면 10dB는 0dB보다 10dB가 크므로 0dB보다 10¹배만큼 크다. 또한, 20dB는 0dB보다 20dB가 크므로 0dB보다 10²배, 즉 100배만큼 크다. | ||
+ | |||
+ | 인간의 귀는 주파수나 데시벨에 따라 음압을 정확하고 순차적으로 인식하지 못하기 때문에 인간이 느끼는 음의 상대적인 크기를 고려하여 '''폰'''(Phon)이나 '''쏜'''(Sone)이라는 척도를 사용하기도 한다. 같은 진폭의 소리라면 약 4,000 Hz 부근의 소리가 가장 잘 들리며, 가청주파수의 상한, 하한에 가까운 소리는 진폭이 크더라도 잘 들리지 않는다. | ||
+ | |||
===전파 속도=== | ===전파 속도=== | ||
===위상=== | ===위상=== |
2021년 9월 28일 (화) 10:14 판
소리(Sound) 또는 음(音), 음파는 물체의 진동에 의해 발생하고 공기나 물 같은 매질의 진동으로 인해 전달되는 종파(縱波)이다. 대표적으로 사람의 청각기관을 자극하여 뇌에서 해석되는 매질의 움직임이 그 예이다. 우리들의 귀에 끊임없이 들려오는 소리는 공기 속을 전해오는 파동이다. 소리는 우리들에게 여러 가지 정보를 전해준다. 눈에는 보이지 않는 파동이지만 파동의 여러 가지 성질은 음파의 경우 귀에 들리는 소리의 변화로 알 수가 있다.[1][2][3][4]
개요
소리는 공기와 같은 매질의 진동을 통해 전파되는 파동이다. 보통 지구의 대다수의 동물이 가진 기관인 귀로 감지하는 것을 뜻한다. 귀는 크게 평형과 기압을 감지하는 내이와 고막을 경계로 하는 외이로 구분되는데 고막은 매우 얇은 막으로써 진동인 소리를 감지하는 것에 특화되어 있다. 물론 귀 외의 기관으로 감지하는 동물도 있고 진동인 만큼 매질 전달을 촉각으로 감지할 수도 있다. 사람이 소리를 들을 수 있는 것도 공기가 진동하고 주파수(진동수)를 가지기 때문이다. 사람의 가청주파수는 약 20~20480Hz(20.48 KHz) 이내이고 한계 세기는 130dB까지이며 나이가 듦에 따라 최대 가청주파수는 낮아지게 된다. 이를 벗어난 소리도 인간에게 뭔가 느낌을 전달할 수 있다. 대표적인 예가 사자나 호랑이의 울음소리, 맹수의 울음소리의 경우엔 초저주파의 영향이다. 영화관 혹은 가정집에 설치된 초저음 전용 스피커인 서브 우퍼는 3~120Hz 미만의 소리를 담당하며 지진이나 폭발 씬에서 중요한 역할을 한다. 공학에서의 가청주파수 대역폭은 300~3400Hz이다. 20,000Hz를 초과하는 고주파를 초음파라 부르며 인간이 듣지 못하고 그 자체로는 유해하지 않으나 데시벨 값의 경우 120dB를 초과하는 크기의 소리는 고막을 크게 해칠 수 있다. 보통 인간이 들을 수 있는 최소의 음파는 0 dB로 대략 나뭇잎이 흔들리는 소리이며 청력이 매우 좋은 인간은 -15dB까지도 들을 수 있다고 한다. 1기압의 대기에서의 한계 음량은 194dB이다. 대기는 194dB 이상의 음압을 전달할 수 없다. 소리란 공기를 매개로 삼는 파동이기 때문에 194dB를 초과하는 크기의 음파는 소리로써 기능할 수 없고 단지 충격파가 된다.
소리 파동의 빈도와 파동의 크기를 각각 Hz(헤르츠, 초당 진동수)와 dB(데시벨)로써 나타낸다. 예를 들어 같은 옥타브의 '솔'은 '레'보다 높은 헤르츠 값을 가지며, 제트기의 제트팬의 소리는 선풍기 팬보다 높은 데시벨 값을 가진다. 헤르츠 값은 파동의 초당 진동수에 대한 값이며, 데시벨 값은 10dB당 실제값이 10배 증가하는 로그함수 값이다. 예를 들면 130dB의 음파는 120dB의 음파보다 10배 더 크다. 소리의 회절은 아주 얇은 슬릿이 필요한 전자기파와 달리, 파장이 비교적 길기 때문에 잘 회절되고 따라서 우리는 보이지 않는 담장 너머의 소리나 문밖의 소리 등 상하, 전후, 좌우에서 오는 소리를 전부 들을 수 있다. 대기 중의 소리의 속도는 섭씨 15도일 때 340m/s정도이다. 기온이 1도 올라갈 때마다 약 0.6 m/s씩 증가한다. 광속에 비하면 턱없이 느리다. 번개가 치고 나서 천둥이 울리기까지 몇초의 시간차가 나는 것이 대표적인 예이며 조건만 갖추면 누구나 음속을 직접 측정해볼 수 있다. 소리는 금속같은 매질에서 속도는 6,000~8,000m/s로 엄청나게 빠르데 공기 중에서 느린 편이기 때문에 초음속 전투기같은 경우 음속을 넘어가 버린다. 공기가 전투기에게 밀리기도 전에 전투기가 바로 앞으로 와버리기 때문에 전투기와 강력한 충돌을 일으키면서 큰 압력 차이와 열이 발생한다. 이 현상이 충격파이다. 소리는 기체보다는 액체, 액체보다는 고체에서 더 빠르게 움직이며 물에서는 공기에서 보다 4배, 철에서는 15배 빨리 움직인다. 우주 공간에서는 소리를 전달해줄 매질이 없기 때문에 소리가 들리지 않는다. 또한 소리는 대기압과 밀도 등 여러 가지 환경에 의하여 다르게 들리게 되는데 이 때문에 지구와 다른 환경의 행성에서는 같은 소리를 듣더라도 지구 기준과 다르게 왜곡되어서 들릴 것이다. 그곳에서 진화한 고등 생물이 존재한다면 지구 생물과 청각 시스템이 다를 가능성도 높다.
음파
북을 두드리거나 기타의 현을 튕기면 소리가 들린다. 소리를 내고 있는 북의 가죽이나 기타의 현은 세차게 고동치고 있지만 손을 대서 이 진동을 멈추게 하면 소리는 들리지 않게 된다. 소리를 발생하는 것을 발음체 혹은 음원이라고 하는데 일반적으로 진동하는 물체가 음원이다. 진동하는 물체에서 무엇이 전해와서 소리가 들리는 것일까. 이 의문이 처음으로 해결된 것은 17세기의 중엽이다. 로버트 보일(Robert Boyle)은 당시 독일의 게리케가 발명한 진공 펌프를 사용해서 공기가 소리를 전달하는 매질임을 실험으로 확인했다.
이 실험은 커다란 플라스크와 방울을 사용해도 간단히 할 수 있다. 공기를 빼내기 위한 것과 넣기 위한 두 개의 가느다란 유리관과 방울을 매단 가느다란 막대를 장착한 고무마개를 플라스크에 끼운다. 먼저 공기가 들어간 채 플라스크를 흔들어서 들리는 방울 소리를 확인해 둔다. 다음에 한쪽의 유리관에 진공 펌프를 연결하고 공기를 뽑아내면서 플라스크를 흔들면 방울 소리는 차츰 잘 들리지 않게 된다. 이번에는 펌프질을 멈추고 핀치 콕을 열어서 공기를 조금씩 넣으면서 방울 소리를 들어보면 소리는 차츰 커져서 최초의 크기로 돌아간다. 이 실험으로 소리는 공기를 통해서 들린다는 것을 알 수 있다.
종류
공기는 체적의 변화에 대해 복원력이 있으므로 파동을 전달하는 성질이 있다. 공기 속에서 물체가 진동하면 변화가 공기에 전달되어 파동이 발생한다. 이것이 음파이다. 음파가 가로 파동이냐 세로 파동이냐는 매질의 성질에 따라 결정된다. 일반적으로 체적 변화에 대해 복원력이 있는 물체(고체, 액체, 기체)는 세로 파동을 전하는 매질이며, 형태는 변화에 대해 복원력이 있는 물체(고체)나 액체 속에서는 형태의 변화에 대해 복원력이 없으므로 가로 파동은 전달되지 않는다. 따라서 음파는 공기의 성질을 생각할 때 세로 파동이다.
전달 방법
소리는 공기 속뿐만 아니라 수중이나 고체 속에서도 전달된다. 물속에 잠수하여 돌을 부딪치면 소리가 들린다. 역의 플랫폼에서 전차를 기다리고 있을 때 먼 곳에 있는 전차의 소리가 레일을 통해 들린다. 아프리카의 원주민이 대지에 귀를 대고 코끼리의 발소리를 들을 수 있는 것도 고체 속에 전달되는 소리의 이용이다. 수면파는 물의 표면에 퍼지는 2차원 파동이지만, 음파는 주위의 공기 전체에 퍼지는 3차원 파동이다. 공기의 온도가 일정하면 음파의 파면은 음원을 중심으로 둥근 원을 그리듯 퍼지며, 그 사선(진로)은 언제나 직선이다. 이 성질을 음파의 직진성이라고 한다고 한다.
물리학적 특성
높낮이
소리의 높낮이는 진동수에 의해서만 결정되며 파장이랑 관련이 없다. 진동수가 높으면 높은 소리, 진동수가 낮으면 낮은 소리로 느낀다. 소리의 속도가 일정하다고 가정할 때, 파장은 진동수에 반비례한다. 인간이 들을 수 있는 진동수의 영역은 16에서 2만 Hz까지이다. 특히 진동수가 높은 소리와 낮은 소리는 들을 수 있는 범위가 좁다.
세기
소리의 세기는 그 파동이 얼마나 큰 압력을 갖고 있느냐로 계산되며 음압이라고 표현되고 단위는 데시벨(dB)을 사용한다. 데시벨은 절대적인 기준 수치가 아닌 상대적인 값이며 0dB를 기준으로 10dB가 증가할 때마다 그 소리의 세기, 즉 음압은 10의 거듭제곱 꼴로 커진다. 예를 들면 10dB는 0dB보다 10dB가 크므로 0dB보다 10¹배만큼 크다. 또한, 20dB는 0dB보다 20dB가 크므로 0dB보다 10²배, 즉 100배만큼 크다.
인간의 귀는 주파수나 데시벨에 따라 음압을 정확하고 순차적으로 인식하지 못하기 때문에 인간이 느끼는 음의 상대적인 크기를 고려하여 폰(Phon)이나 쏜(Sone)이라는 척도를 사용하기도 한다. 같은 진폭의 소리라면 약 4,000 Hz 부근의 소리가 가장 잘 들리며, 가청주파수의 상한, 하한에 가까운 소리는 진폭이 크더라도 잘 들리지 않는다.
전파 속도
위상
음색
각주
참고자료
같이 보기