의견.png

"뉴머라이"의 두 판 사이의 차이

위키원
이동: 둘러보기, 검색
(등장배경)
10번째 줄: 10번째 줄:
 
일반적으로 기계학습 알고리즘의 정확도를 측정하는 방식은 데이터를 훈련 데이터와 테스트 데이터로 나누는 것이다. 훈련 데이터를 바탕으로 훈련한 모델의 정확도는 해당 모델이 한 번도 본적 없는 테스트 데이터를 통해 측정한다. 하지만 데이터 과학자가 테스트 점수 형태로 테스트 데이터에 대한 피드백을 받아 이를 모델 선정하는 데 사용 한다면 테스트 데이터를 과적합한 모델이 나올 위험이 있다. 이는 새로운 데이터에 대한 모델의 성능을 저하시킨다.
 
일반적으로 기계학습 알고리즘의 정확도를 측정하는 방식은 데이터를 훈련 데이터와 테스트 데이터로 나누는 것이다. 훈련 데이터를 바탕으로 훈련한 모델의 정확도는 해당 모델이 한 번도 본적 없는 테스트 데이터를 통해 측정한다. 하지만 데이터 과학자가 테스트 점수 형태로 테스트 데이터에 대한 피드백을 받아 이를 모델 선정하는 데 사용 한다면 테스트 데이터를 과적합한 모델이 나올 위험이 있다. 이는 새로운 데이터에 대한 모델의 성능을 저하시킨다.
  
[[파일:뉴머라이동기.PNG|썸네일|500픽셀|]]
+
[[파일:뉴머라이동기.PNG|400픽셀|섬네일|가운데|]]
  
 +
이러한 과적합 문제를 "적응형 데이터 분석(Adaptive Data Analysis)"라고 한다. 적응형 데이터 분석으로 도출한 모델은 성능 저하부터 아예 쓸 수 없게 되눈 등 다양한 문제가 있다. 그러나 뉴머라이의 경우, 적응형 데이터 분석은 과거 데이터를 과적합 하여 실제로 예측할 때는 성능이 감소할 때 일어난다. 기계 학습 경쟁은 과거 데이터에 기반한 예측률에 따라 승자가 결정되므로 과거 데이터를 과적합할 유인이 있다. 그 결과 의도적으로 과적합을 하게 된다.
  
 
== 특징 ==  
 
== 특징 ==  

2019년 9월 23일 (월) 11:00 판

뉴머라이(Numrai) 로고
뉴머라이(Numrai) 로고와 글자

뉴머라이(Numerai)는 과적합(overfitting)을 방지하고 기계 지능 간의 협동을 이끌어내는 암호화폐이다.[1] 쉽게 말하자면 인공지능을 사용하는 해지펀드이다. 단위는 NMR이다. 뉴머라이 회사는 헤지펀드암호화폐 기반 예측 시장을 운영하는 스타트업이다. 이 기업의 공동창업자는 리처드 크레이브프레드 에르샘이다. 이들은 지난 2017년 에어드랍을 통해서 자체 암호화폐인 뉴머라이토큰을 발행했다.[2] 이들은 2017년 6월부터 전문가들을 대상으로 주가를 예측하고, 그것이 맞으면 돈을 지급하고 틀리면 돈을 잃는 예측시장 프로토콜 이레이저(Erasure)를 운영했다. 뉴머라이를 창업한 리처드 크레이브는 데이터 과학자들에게 뉴머라이토큰을 지급해 프로토콜을 지금까지 운영했다고 설명했다.[3] 뉴머라이와 유사한 블록체인 기반의 예측 플랫폼으로 어거(Augur)와 엔도르(Endor)가 있다.

개요

기계 학습(Machine Learning) 간의 경쟁(competition)은 의도적인 과적합(overpfitting)에 취약하다. 이런 상황에서 뉴머라이는 과적합을 경제적으로 불합리하게 만드는 새로운 경매방식에 사용할 수 있는 새로운 암호화폐 뉴머라이 토큰을 제사한다. 이 새로운 경매방식은 데이터 과학자들이 새로운 데이터에 대한 자신의 예측모델 성능에 대한 자신감 정도를 표현할 수 있게 하여 최적의 입찰을 이끌어낸다. 이러한 경매에 따라 뉴머라이 토큰 또한 경제적 가치를 지니게 된다. 뉴머라이는 인공지능이 펀드를 운영하는 방식으로 이뤄지며, 인간이 모델(엔진)을 마들고 이에 기반하여 투자를 진행한다. 뉴머라이에서 사용하는 투자 모델은 21가지 수치 값을 통해 1과 0의 결과를 예측한다. 다양한 회사들에 대하여 21개의 투자 지표를 모으고, 그 지표를 분석하여 구매 여부를 결정한다. 여기서 구매하면 1을, 구매하지 않으면 0을 선택한다.[4]

등장배경

일반적으로 기계학습 알고리즘의 정확도를 측정하는 방식은 데이터를 훈련 데이터와 테스트 데이터로 나누는 것이다. 훈련 데이터를 바탕으로 훈련한 모델의 정확도는 해당 모델이 한 번도 본적 없는 테스트 데이터를 통해 측정한다. 하지만 데이터 과학자가 테스트 점수 형태로 테스트 데이터에 대한 피드백을 받아 이를 모델 선정하는 데 사용 한다면 테스트 데이터를 과적합한 모델이 나올 위험이 있다. 이는 새로운 데이터에 대한 모델의 성능을 저하시킨다.

뉴머라이동기.PNG

이러한 과적합 문제를 "적응형 데이터 분석(Adaptive Data Analysis)"라고 한다. 적응형 데이터 분석으로 도출한 모델은 성능 저하부터 아예 쓸 수 없게 되눈 등 다양한 문제가 있다. 그러나 뉴머라이의 경우, 적응형 데이터 분석은 과거 데이터를 과적합 하여 실제로 예측할 때는 성능이 감소할 때 일어난다. 기계 학습 경쟁은 과거 데이터에 기반한 예측률에 따라 승자가 결정되므로 과거 데이터를 과적합할 유인이 있다. 그 결과 의도적으로 과적합을 하게 된다.

특징

각주

  1. 뉴머라이 백서 번역본〉, 2017-02-20
  2. Leigh Cuen, 〈암호화폐 기반 예측시장 ‘뉴머라이’ 토큰판매로 $1100만 유치〉, 《코인데스크코리아》, 2019-03-26
  3. Nikhilesh De, 〈뉴머라이, 암호화폐 기반 주가 예측시장 대중에 공개〉, 《코인데스크코리아》, 2018-10-09
  4. tmkor,〈AI 블록체인 햇지펀드 numerai 토너먼트 참가해보기!〉, 《스팀잇》

참고자료

같이 보기


  질문.png 이 문서는 로고가 필요합니다.  

  의견.png 이 뉴머라이 문서는 암호화폐 종류에 관한 토막글입니다. 위키 문서는 누구든지 자유롭게 편집할 수 있습니다. [편집]을 눌러 이 문서의 내용을 채워주세요.