1911년 최초로 초전도현상이 발견된 이후 100여 년 만에 과학자들이 상온(15°C)에서 초전도가 되는 상온 초전도체를 발견하는데 성공했다. 사진은 초전도현상에 의해 물체가 허공에 떠 있는 장면.
초전도체(superconductor)는 초전도 전이 온도(superconducting transition temperature, Tc)라고 하는 특정 온도 이하에서 모든 전기 저항을 상실하는 물질을 말한다.
초전도체는 자기장의 특성에 따라 자기장이 들어가지 못하는 제1종 초전도체와 자기장이 침투하지만 초전도성을 유지하는 제2종 초전도체로 구분된다. 제1종 초전도체는 나이오븀(Nb), 바나듐(V) 등 금속 원소이며, 제2종 초전도체는 합금, 화합물 등이 해당된다.
특히 제2종 초전도체는 내부에 자기장이 들어가면서도 무저항을 유지하는 성질을 가지고 있다. 초기에 발견된 제2종 초전도체는 NbTi, Nb₃Sn 등 합금이 있다. 이는 액체 헬륨으로 냉각해야 할 정도의 낮은 온도(영하 260도 이하)에서 초전도성을 나타내므로 '저온 초전도체'라고 부른다. 1987년부터 발견되기 시작한 세라믹 계열 초전도체 역시 제2종 초전도체인데, 합금계보다는 수십도 높은 온도에서 초전도성을 나타내므로 '고온 초전도체'라고 부른다.
내용
초전도체는 임계온도보다 낮은 온도에서만 초전도상태가 된다. 임계온도가 너무 낮으면 초전도체를 실용화하기 어려우므로 임계온도를 높이는 것이 중요한 문제로 다루어졌다. 임계온도는 고정된 값이 아니고 자기장과 전류와도 관계가 있다. 예를 들어 초전도체가 자기장 속에 있거나 전류가 흐르고 있으면 임계온도가 더 낮아진다.따라서 임계온도가 높다고 해서 무조건 좋은 초전도체라고 할 수는 없다. 자기장 내에서의 임계온도가 자기장이 없을 때에 비해 현저히 낮다면 사용하기 어렵다. 그 외에도 초전도체는 기계적, 열적으로 다루기 어려운 여러 가지 특성이 있기 때문에 실용화를 위해서는 여러 분야가 복합된 기술이 필요하다.
역사
1911년 4월 네덜란드의 물리학자 오너스는 수은을 액체 헬륨으로 4.2K까지 냉각할 때 갑자기 전기 저항이 소멸하는 현상을 발견하였다. 이후 과학자들은 점점 더 높은 온도에서 초전도 현상을 보이는 물질을 발견하기 위해 노력했으며, 현재 6,000종 이상의 초전도체가 알려져 있다.
1957년 바딘(Bardeen), 쿠퍼(Cooper), 슈리퍼(Schrieffer)는 BCS 이론(BCS theory)으로 알려진 초전도 이론을 발표하였다. 이 이론에 따르면, 특정 조건에서 연속적인 포논(phonon, 격자 진동의 양자 물리량) 상호 작용에 의해 매개된 두 전자 간 인력이, 같은 전하를 띠는 전자들 사이에서 직접적으로 작용하는 반발력을 상쇄시키고도 남아 약한 인력이 작용할 수 있는 정도로 유도할 수 있다. 두 전자는 서로 약하게 묶여 소위 쿠퍼 쌍(Cooper pair)을 형성하는데, 이 쿠퍼 쌍이 바로 초전도의 근원이 된다.
1986년까지는 Nb₃Ge 화합물의 Tc가 23.2K로 최고였으나, 그해 취리히 IBM 연구소의 뮐러(K. A. Müller)와 베드노르츠(J. G. Bednorz)가 합성한 비화학량론적(non-stoichiometric) 바륨 란타넘 구리 산화물(BaxLa₂-xCuO₄, 여기에서 x는 대략 0.1) 경우에 35K의 Tc가 확인됨으로써 그 기록은 깨어졌다. 이후 과학자들은 더 높은 Tc 값을 갖는 구리를 포함한 산화물을 계속 발견하였다. 예를 들어, 90K의 YBa₂Cu₃O₇, 125K의 Tl2Ba₂Ca₂Cu₃O₁₀, 133K의 HgBa₂Ca₂Cu₃O₈₊ₓ, 그리고 지금까지 가장 높은 138K의 Hg₀.₈Tl₀.₂Ba₂Ca₂Cu₃O₈.₃₃이 있다. 세라믹이라고도 하는 이 금속 산화물은 대부분 부도체이기 때문에, 높은 Tc 값을 나타내리라고는 전혀 예상하지 못했다.
고온 초전도체의 결정 구조
고온 구리 산화물 초전도체는 뒤틀려 있거나 산소가 결핍된 여러 층의 페로브스카이트 구조로 설명할 수 있다. 고온 세라믹 초전도체의 결정 구조의 특징 중 하나는 교대로 반복되는 [CuO₂] 평면을 가지고 있다는 점이며, 이때 [CuO₂] 층의 수가 많아질수록 일정 정도까지는 초전도체의 Tc가 높아진다. 액체 질소의 끓는점(77K)보다 높은 온도에서 Tc를 갖는 첫 번째 구리 산화물 YBa₂Cu₃O₇에 있어서 세 가지 다른 금속인 이트륨, 바륨, 구리의 몰 비가 1: 2:3이므로 1-2-3 초전도체라고도 불린다.
1-2-3 초전도체의 결정 구조를 보면 구리 원자의 2/3는 5개의 산소 원자로 구성된 사각뿔로 둘러싸이고, 산소 원자들의 일부는 이웃한 [CuO₅] 원자단에 공유되어 2차원적인 사각뿔 층을 이룬다. 나머지 구리 원자는 4개의 산소 원자로 구성된 사각 평면에 의해 둘러싸이고, 4개의 산소 원자 중에서 2개는 이웃한 [CuO₄] 사각 평면에 공유되어 [CuO₄] 그룹 사슬이 된다. 이트륨(Y)의 경우 +3, 바륨은 +2, 산소는 -2인 일반적인 산화수를 기초로 할 때, 구리 원자가 정수가 아닌 +2.33의 산화수를 갖는다는 점이 흥미롭다. 무한히 확장된 구리와 산소 원자층 및 정수가 아닌 산화수를 가진 구리가 전류 흐름에 중요한 역할을 하는 것으로 보인다. 그러나 고온 세라믹 초전도체에서 일반적으로 인정되는 초전도 이론은 아직 없다. 이 분야는 실험이 이론보다 훨씬 앞서 있는 분야 중 하나이다.
마이스너 효과
마이스너 효과의 모식도. 온도가 Tc보다 낮으면 초전도체가 화살표로 표시된 자기력선을 배척한다.
초전도체의 성질 중 가장 흥미로운 성질은 자석을 부상시키는 능력이다. 초전도체를 Tc 이하로 냉각하여 자석을 그 초전도체 위에 놓으면 초전도체와 자석이 서로 반발하여 자석이 공기 중에 떠 있는 것처럼 초전도체 위에 뜬다. 자석과 초전도체 사이의 반발력은 다음과 같은 이유로 발생한다. 자석을 초전도체 쪽으로 움직이면 초전도체 표면에 초전류(supercurrent)가 유발되는데, 자석 이동을 중지한 다음에도 전류는 계속해서 흐른다. 곧이어 초전류로 인해 초전도체에 자기장이 발생하고 이것은 자석으로부터 생기는 자기장을 정확하게 상쇄하게 된다. 그리하여 초전도체 벌크 내부에서 알짜 자기장은 0이 되는데, 이 현상을 마이스너 효과라고 한다. 반면 초전도체 외부에서는 자석과 초전류 때문에 생기는 자기장들은 동일한 두 막대자석의 극이 마주치는 것처럼 서로 반발한다. 따라서 초전도체 위의 자석은 아래 방향의 중력과 함께 위 방향의 자력을 받아 두 힘이 동일한 점에서 떠 있게 된다.
상온 초전도체 개발
2020년 10월 15일, '사이언스 뉴스'는 과학자들이 마침내 상온에서 초전도현상이 가능한 최초의 상온 초전도체(room-temperature superconductor)를 찾아냈다고 보도했다. 지난 1911년 네덜란드 라이덴 대학의 카멜린 온네스(Heike Kamerlingh-Onnes) 교수가 초전도현상을 발견한 후 109년 만의 일이다. 상온 초전도체를 발견한 곳은 미국 뉴욕에 소재한 로체스터 대학이다. 연구를 이끈 물리학자인 랭거 디아스(Ranga Dias) 교수는 새로 발견한 초전도체가 15°C 이하에서 초전도현상이 가능하다고 말했다. 디아스 교수는 두 개의 다이아몬드 사이에 탄소와 수소, 유황을 삽입한 후 레이저로 지구 기압보다 약 260만 배 강한 압력을 가해 15°C에서 초전도현상을 유도하는데 성공할 수 있었다고 설명했다.
상온 초전도체 개발은 산업적으로도 큰 의미를 지니고 있다. 향후 전기저항이 없는 전선을 개발할 경우 그동안 전기저항으로 소실됐던 막대한 양의 전기에너지를 보존할 수 있다. 그런 만큼 세계적으로 전기에너지 생산량을 대폭 줄여나갈 수 있다. MRI(자기공명영상장치)서부터 입자가속기, 양자컴퓨터 등에 이르기까지 다른 첨단 기술 발전에 큰 영향을 미칠 것으로 예상된다.[1]
초전도체의 응용
초전도체는 여러 분야에 응용될 수 있는데, 예를 들어 강력한 초전도 자석은 의료 진단에 널리 이용하고 있는 자기 공명 영상(MRI) 장치나 초전도 양자 간섭 장비(SQUID)의 필수 부품이다. 또한 현재 운행 중인 고속 자기 부상 열차를 만드는 데에도 이용된다. 초전도체는 고속 입자 가속기에서 전하 입자의 경로를 휘게 만드는 자석 제조에도 이용된다. 그러나 이러한 응용은 액체 헬륨으로 4.2K까지 냉각된 통상적 초전도체(Tc ≤ 20K)를 이용하는데, 액체 헬륨은 정교한 극저온 장치가 필요한 값비싼 물질이다.
그런데 새로운 고온 초전도체의 Tc 값이 우유보다 싸고 풍부한 액체 질소 냉매의 끓는점 이상에 있기 때문에 고무적이고, 훨씬 더 높은 Tc 값을 갖는 물질에 대한 연구도 계속되고 있다. 장거리 전력 수송과 같은 것에 이용하려면 실온에서 초전도성을 보이는 물질이 필요한데, 현재 알려진 고온 초전도체들은 녹는점이 높고 부서지기 쉬운 분말이므로, 전기 장치에 필요한 도선과 코일로 제조하기가 쉽지 않다. 그런데도 고온 초전도체의 공업적 응용이 시도되고 있다. 초전도성 박막은 휴대 전화 기지국의 마이크로파 필터로 이용되고 있고, 또한 현재 길이 1km 정도의 초전도성 도선은 상업적으로 이용할 수 있다.
각주
참고자료
같이 보기
이 초전도체 문서는 소재에 관한 글로서 검토가 필요합니다. 위키 문서는 누구든지 자유롭게 편집할 수 있습니다. [편집]을 눌러 문서 내용을 검토·수정해 주세요.
|
산업 : 산업, 산업혁명, 기술, 제조, 기계, 전자제품, 정보통신, 반도체, 화학, 바이오, 건설, 유통, 서비스, 에너지, 전기, 소재 □■⊕, 원소, 환경, 직업, 화폐, 금융, 금융사, 부동산, 부동산 거래, 부동산 정책, 아파트, 건물, 토지
|
|
소재
|
감광재 • 경화제 • 그래핀볼 • 그리스 • 금박 • 금속 • 금속재료 • 기름 • 나노소재 • 나프타 • 내화재 • 단열재 • 단일소재 • 도금 • 도전재 • 도체 • 동박 • 마감재 • 마찰재 • 막 • 매질 • 메타물질 • 무기재료 • 바닥재 • 박막 • 반도체 • 방부제 • 방음재 • 방진재 • 방청제 • 벽지 • 보강재 • 보온재 • 복합동박 • 복합소재 • 부도체 • 부산물 • 부식 • 부자재 • 불순물 • 살균제 • 소재 • 쇠붙이 • 수용액 • 시료 • 신소재 • 실리카젤(실리카겔) • 알루미늄 호일 • 에어로젤 • 엑소일렉트로겐 • 연마재 • 외장재 • 용매 • 용액 • 용융염 • 용질 • 원료 • 원소재 • 원자재 • 원재료 • 유기재료 • 유체 • 윤활유(윤활제) • 융해 • 은박 • 은박지 • 잉곳 • 자성체 • 자원 • 자재 • 재료 • 재질 • 전고체 • 전구체 • 절연체 • 접착제 • 접합재 • 접합제 • 제진재 • 주괴 • 중간재 • 증기 • 증착 • 차음재 • 천연소재 • 천연자원 • 천장재 • 철스크랩 • 첨가제 • 첨단소재 • 초전도체 • 촉매 • 컴파운드 • 코르크 • 코팅 • 쿠킹호일 • 탄소소재 • 탄소 에어로젤 • 페인트 • 포장재 • 폭발물 • 피복 • 피복재 • 호일(포일) • 흡음재
|
|
암석
|
각섬암(곱돌) • 간석기(마제석기) • 감람석 • 곡옥 • 골재 • 광물 • 광석 • 구리(동) • 규산염 • 규암(차돌) • 금 • 녹색편암 • 다이아몬드 • 대리석(대리암) • 돌 • 돌멩이 • 뗀석기(타제석기) • 루비 • 마그마 • 머드 • 모래 • 무쇠(주철) • 무연탄 • 바위 • 반려암 • 방해석 • 백금 • 백운암 • 벽돌 • 변성암 • 보석 • 비취 • 사암 • 사장석 • 사파이어 • 석고 • 석기 • 석영(수정, 쿼츠) • 석재 • 석탄 • 석회 • 석회암(석회석) • 섬록암 • 세라믹 • 셰일(혈암) • 쇠 • 수성암 • 스테인리스강 • 스피넬(첨정석) • 슬래그 • 시멘트 • 심성암 • 아메트린 • 아스콘 • 암석 • 암편 • 에메랄드 • 역암 • 역청탄 • 오석 • 오일셰일(함유셰일, 유혈암) • 오팔 • 옥 • 용암 • 운모 • 운석 • 원료탄 • 원석 • 유리 • 은 • 응회암 • 이암 • 이판암 • 인공 다이아몬드 • 인광석 • 자갈 • 자수정 • 잔석기 • 장석 • 점토(찰흙) • 점판암 • 정장석 • 조암광물 • 조흔색 • 종유석 • 준광물 • 지르콘 • 지하자원 • 진흙 • 천연암석 • 철광석 • 철기 • 철재 • 청금석 • 청동기 • 콘크리트 • 큐빅 • 토사 • 토파즈 • 퇴적암 • 편마암 • 편암 • 현무암 • 혼펠스 • 화강암 • 화산암 • 화성암 • 황철석 • 휘석 • 흑요석 • 흙 • 희토류
|
|
섬유
|
가죽 • 거위털(구스다운) • 거즈 • 고급가죽 • 고무줄 • 광목 • 광물섬유 • 광섬유 • 극세사 • 금속섬유 • 기모 • 깃털 • 끈 • 나노셀룰로스 • 나일론 • 나파가죽 • 낙타털 • 네오프렌 • 노르디코 • 누비 • 능직 • 다기능성 탄소나노튜브 섬유 • 다운 • 대마 • 데님 • 동물섬유 • 돼지가죽 • 라이오셀(리오셀) • 레이온(인견) • 리넨(린넨) • 마 • 마닐라삼 • 마닐라지 • 마분지 • 말가죽 • 메쉬 • 면 • 면직물 • 면화 • 명주 • 모 • 모다크릴 섬유 • 모달 • 모시 • 모직물 • 모피 • 목재 • 목화 • 무기섬유 • 무명 • 밍크털 • 반합성섬유 • 밧줄 • 방모 • 방모사 • 방모직물 • 방적 • 방직 • 방직섬유 • 뱀가죽 • 벨로아 • 벨벳 • 벨보아 • 보풀 • 부직포 • 붕소섬유 • 비건가죽 • 비단(실크) • 비스코스 • 삼베 • 새끼줄 • 석고보드 • 석면 • 석영섬유 • 섬유 • 세라믹섬유 • 셀룰로스 • 소가죽 • 소모 • 소모사 • 소모직물 • 솜 • 솜털 • 수자직(주자직) • 순모 • 슈퍼섬유 • 스웨이드(세무) • 스판덱스 • 시어서커 • 식물섬유 • 실 • 실리카섬유 • 아라미드 • 아세테이트 섬유 • 아크릴 섬유 • 악어가죽 • 알칸타라 • 암면 • 양가죽 • 양모 • 양모사 • 양모직물 • 오리털(덕다운) • 옷감 • 우레탄 • 울 • 원단 • 원모 • 원목 • 원사 • 유기섬유 • 유리섬유 • 인조가죽 • 잔털 • 재생섬유 • 종이 • 직물 • 짚 • 천 • 천연가죽 • 천연섬유 • 천연펄프 • 캐시미어 • 코듀로이(골덴) • 타조가죽 • 탄소섬유 • 탄화규소섬유 • 털 • 털실 • 텐셀 • 토끼털 • 패브리칸 • 펄프 • 평직 • 프로믹스 • 플란넬 • 플리스(폴라폴리스) • 피혁 • 합성섬유 • 합판 • 혼방 • 화학섬유(인조섬유)
|
|
수지 (플라스틱)
|
ABS • EVA • PVC • 고무 • 공중합체 • 라텍스 • 레진 • 모노머 • 목타르 • 바이오플라스틱 • 본드 • 부틸 • 부틸고무 • 부틸테이프 • 비닐 • 비닐기 • 비닐론(비날론) • 생고무 • 생분해성 플라스틱 • 송진 • 수액 • 수지 • 스티로폼 • 스펀지 • 시트 몰딩 컴파운드(SMC) • 실리콘 • 아스팔트 • 아크릴 • 에폭시 • 엔지니어링 플라스틱 • 염화비닐 • 천연고무 • 천연수지 • 콜타르 • 타르 • 페놀수지 • 페트(PET, 폴리에틸렌 테레프탈레이트) • 페트병 • 포지드 카본 • 폴리머(중합체) • 폴리비닐알코올 • 폴리실리콘 • 폴리아미드 필름 • 폴리아크릴 • 폴리아크릴로나이트릴 • 폴리에스테르(폴리에스터) • 폴리에틸렌 • 폴리염화비닐 • 폴리염화비닐라이덴 • 폴리올레핀 • 폴리우레탄 • 폴리카보네이트 • 폴리프로필렌 • 플라스틱 • 필름 • 합성고무 • 합성수지 • 호박
|
|
위키 : 자동차, 교통, 지역, 지도, 산업, 기업, 단체, 업무, 생활, 쇼핑, 블록체인, 암호화폐, 인공지능, 개발, 인물, 행사, 일반
|
|
산업 : 산업, 산업혁명, 기술, 제조, 기계, 전자제품, 정보통신, 반도체, 화학, 바이오, 건설, 유통, 서비스, 에너지 □■⊕, 전기, 소재, 원소, 환경, 직업, 화폐, 금융, 금융사, 부동산, 부동산 거래, 부동산 정책, 아파트, 건물, 토지
|
|
에너지
|
SMR • 가속운동 • 가시광선 • 가열 • 각속도 • 감마선 • 감속운동 • 강력 • 고압 • 고온 • 고전역학 • 관성력 • 관성모멘트 • 광선 • 광속 • 광전자 • 광전효과 • 광합성 • 기압 • 냉각 • 냉방 • 뉴턴 • 대류 • 대체에너지 • 동력 • 동력원 • 라디오파 • 마이크로파 • 마찰 • 마찰계수 • 마찰력 • 마찰에너지 • 만유인력 • 만유인력의 법칙 • 무중력 • 물리에너지 • 바이오에너지 • 발열 • 발열반응 • 발화 • 방사선 • 방열 • 베타선 • 복사 • 복사선 • 복사에너지 • 부력 • 불 • 블루에너지 • 빛 • 빛에너지 • 삼투압 • 생물에너지 • 석유에너지 • 석탄에너지 • 섭씨 • 소리에너지 • 소수력 • 속력 • 수력 • 수력에너지 • 수소에너지 • 수압 • 수열 • 수열에너지 • 수직항력 • 신생에너지 • 신에너지 • 신재생 • 신재생에너지 • 알짜힘(합력) • 알파선 • 압력 • 압축응력 • 약력 • 양극선 • 양자역학 • 에너지 • 에너지밀도 • 에너지보존법칙 • 에너지원 • 에너지 효율 • 엑스선 • 엔트로피 • 역반응 • 역파장 • 역학적 에너지(기계에너지) • 열 • 열대류 • 열량 • 열복사 • 열분해 • 열에너지 • 열역학 • 열전도 • 열전도도 • 열전도율 • 열절연 • 열팽창 • 열팽창계수 • 열효율 • 온도 • 온도차 • 왕복에너지 • 왕복운동 • 운동에너지 • 원운동 • 원자력 • 원자력에너지 • 위치에너지 • 음극선 • 응력 • 인공태양 • 인장응력 • 인화 • 입자선 • 자외선 • 자유낙하 • 작용 • 재가열 • 재생에너지 • 저온 • 저압 • 적외선 • 전기에너지 • 전도 • 전자기력 • 절대온도 • 정반응 • 정지에너지 • 조력 • 조력에너지 • 조류에너지 • 줄 • 줄의 법칙 • 중력 • 중력에너지 • 지열 • 지열에너지 • 직사광선 • 직선운동 • 진동 • 진동에너지 • 진자 • 진자운동 • 천연에너지 • 청정에너지 • 친환경에너지 • 칼로리 • 탄성 • 탄성에너지 • 태양 • 태양광 • 태양광에너지 • 태양에너지 • 태양열 • 태양열에너지 • 텐서 • 파동 • 파력 • 파력에너지 • 파워 • 파장 • 폐기물에너지 • 폭발 • 풍력 • 풍력에너지 • 풍압 • 항력(드래그포스) • 해양에너지 • 핵반응 • 핵분열 • 핵분열에너지 • 핵붕괴 • 핵에너지 • 핵융합 • 핵융합에너지 • 화력 • 화씨 • 화학 • 화학에너지 • 회전 • 회전수 • 회전에너지 • 회전운동 • 흡열 • 흡열반응 • 힘
|
|
발전
|
교류발전기 • 마이크로 수력발전 • 물레방아 • 박테리아 발전소 • 발전 • 발전기 • 발전소 • 발전효율 • 변전소 • 비상발전기 • 소수력발전 • 소수력발전소 • 소형모듈원전(SMR) • 수력발전 • 수력발전소 • 원자력발전 • 원자력발전소 • 조력발전 • 조력발전소 • 조류발전 • 조류발전소 • 지열난방 • 지열발전 • 지열발전소 • 직류발전기 • 태양광발전 • 태양광발전소 • 태양광패널 • 태양열발전 • 태양열발전소 • 파력발전 • 파력발전소 • 풍력발전 • 풍력발전소 • 풍차 • 해양 온도차 발전 • 핵융합발전 • 핵융합발전소 • 화력발전 • 화력발전소 • 회전축
|
|
연료
|
CNG • LNG • LPG • 가스 • 가스충전소 • 가연성 • 갈탄 • 개질수소 • 경유(디젤) • 경질유 • 고급휘발유 • 고압가스 • 고체연료 • 그레이수소 • 그린수소 • 기체연료 • 나무 • 난방연료 • 두바이유 • 등유 • 땔감 • 면세유 • 무연탄 • 무연휘발유 • 바이오 • 바이오가스 • 바이오디젤 • 바이오매스 • 바이오에탄올 • 바이오연료 • 방사성물질 • 배기가스 • 배출가스 • 번개탄 • 부생수소 • 분별증류 • 뷰테인(부탄) • 브라운수소 • 브렌트유 • 블루수소 • 석유 • 석유화학 • 석탄 • 셰일가스 • 셰일오일 • 수소 • 수소연료 • 수소전기 • 순도 • 숯(목탄) • 압축가스 • 액체연료 • 액화가스 • 역청탄 • 연료 • 연료첨가제 • 연료화 • 연비 • 연소 • 연탄 • 오일샌드 • 오일셰일 • 옥탄가 • 용해가스 • 원유 • 유사경유 • 유연탄 • 유연휘발유 • 윤활유 • 일반휘발유 • 장작 • 점화 • 정유 • 정제 • 조개탄 • 주입 • 중유 • 중질유(中質油) • 중질유(重質油) • 증류 • 질소산화물 • 천연가스 • 천연자원 • 친환경연료 • 코크스 • 타르 • 텍사스유 • 프로페인(프로판) • 합성경유 • 핵연료 • 혼유 • 혼합가스 • 혼합기체 • 혼합연료 • 화석연료 • 화재 • 휘발유(가솔린)
|
|
위키 : 자동차, 교통, 지역, 지도, 산업, 기업, 단체, 업무, 생활, 쇼핑, 블록체인, 암호화폐, 인공지능, 개발, 인물, 행사, 일반
|
|