검수요청.png검수요청.png

한랭전선

위키원
이동: 둘러보기, 검색

한랭전선(寒冷前線, cold front)은 차가운 기단이 따뜻한 기단을 밀어 올리고 이동하여 가는 곳에 나타나는 전선을 말한다. 북반구에서는 저기압의 중심에서부터 서남쪽으로 뻗으며, 전선의 부근에는 풍향풍속이 갑자기 변하고 소나기뇌우를 동반하는 경우가 많다. 이 전선이 통과하면 기온이 갑자기 떨어진다.

개요

한랭전선은 따뜻한 공기가 있는 지역에 상대적으로 찬 공기가 이동해오면서 만들어지는 전선이다. 온도에 따른 밀도차이에 의해 이동해오는 찬 공기가 따뜻한 공기의 밑으로 파고드는 형상이 된다. 두 종류의 서로 다른 공기가 접촉하면서 그 접촉면에 구름이 만들어지는 것은 온난전선과 동일하다. 한랭전선은 찬 기단이 따뜻한 기단 밑으로 파고들면서 밀어내는 전선을 말하며, 이때 구름 형태는 적운, 웅대적운, 적란운으로 이루어진 대류 구름대이기 때문에 소나기, 우박, 뇌우 등이 잘 나타나고 돌풍도 불기도 한다. 심하면 토네이도도 동반한다.

대기과학을 처음 접할때는 어차피 두 기단이 만나는 건 유사한데 온난전선은 층운가랑비를, 한랭전선은 소나기를 뿌리는지 의문이 들기 쉬운데, 교과서적으로는 이동속도의 차이로 설명하지만 사실 온난전선과 한랭전선의 구름대는 그 발생기작이 다르다. 기본적으로 모든 대기현상은 상층이 먼저 움직이는데 상층이 상승하면 하층이 따라 상승하며 온도경도를 따라 구름대를 만드는게 온난전선이고, 상층 한기가 이동하여 대기 불안정으로 인해 하층으로 파고드는게 한랭전선이다. 상층이 차갑냐 따뜻하냐는 대기안정도에 지대한 영향을 미치기 때문에 단순히 하층에서 두 기단이 만나는 것으로는 설명할 수 없는 효과를 만들어낸다. 그림만 봐서는 알기 힘들고 설명하려면 단열선도까지 등장해야 하기 때문에 대충 설명하고 넘어가는 것이다.

한랭전선면의 경사는 온난전선보다 크다. 찬 기단이 따뜻한 기단 밑으로 파고들어가 난기가 상승하게 되고 단열팽창에 의한 냉각으로 구름이 발생하여 비나 눈이 내리게 된다. 발생하는 구름대는 적란운, 웅대적운, 적운, 난층운으로 이루어졌기 때문에 소나기성 비, 겨울엔 강한 소낙눈이 내린다. 뇌우, 뇌설을 동반하는 경우가 많고 그 강수폭은 전선 전면과 후면의 폭 80~150 km 정도에 이른다. 한랭전선의 전면에는 상승기류가 있기 때문에 전선이 가까이 오면 기압은 하강하며 돌풍을 일으키기도 한다. 전선이 통과하면 한랭기단 내에 들어가서 기온이 급강하하고 이슬점 온도도 떨어지며, 풍향·풍속의 급변과 함께 기압이 상승한다.

한랭전선은 온대저기압에 동반되는데 북반구를 기준으로 하면 저기압의 중심에서 남서 또는 서남서쪽으로 뻗쳐 있다. 겨울철에는 강한 소낙눈을 동반하며, 천둥번개를 동반한 대설인 뇌설(snow thunderstorm)이 발생하기도 한다. 한랭전선의 일종인 북극전선(arctic front)에 동반한 북극폭발(arctic blast)은 강추위눈폭풍을 초래한다. 한랭전선 통과 후엔 한랭기단 내에 들어가서 기온이 급강하하고 이슬점 온도도 떨어지며, 풍향·풍속의 급변과 함께 기압이 상승한다.[1][2]

특징

찬 공기가 따뜻한 공기에 비해 상대적으로 밀도가 크기 때문에 온난전선에 비해 전선면이 더 가파르게 형성되며, 그 이유로 넓은 지역에 구름이 형성되는 온난전선과는 달리 전선면 뒤쪽 좁은 지역에 수직으로 적란운이 높게 발달되는 것이 특징이다. 따라서 접촉면에서는 온난전선에 비해 많은 비가 오게 되며, 면적이 좁기 때문에 전선이 이동할 경우 금방 비가 그치게 되어 소나기의 양상을 띤다. 이는 전선면이 수직인 점 뿐만이 아니라 전선의 이동속도가 온난전선에 비해 빠르다는 점도 작용한다. 전선 통과 후에는 찬 공기의 세력권이므로 기온이 하강하며 기압은 상승한다.

특히, 적란운이 높게 발달하기 때문에 한랭전선의 영향권에 들 때 적란운 상에서 발생할 수 있는 악기상(우박, 뇌우 등)을 흔히 목격할 수 있다. 미국에서는 아메리카 대륙의 제트기류 변동성, 평지 지형 등의 요인으로 슈퍼셀 현상이 발생하기도 한다. 찬 공기의 세력이 셀수록 더욱 더 강하게 발달하며, 겨울철 동아시아 지역의 국가에서는 한랭전선 영향권 끝자락에서 비가 눈으로 바뀌는 경우도 상당히 있다. 주로 11월과 2월에 남북기온차가 클 때 나타난다.

다만 이건 전형적인 중위도 강수의 경우에 그렇고 한반도에서는 봄, 가을의 일부 시기를 제외하면 한랭전선보다는 온난전선에서 비가 많이 내린다. 저기압에 의한 비 자체는 경압성(온도경도)이 없더라도 내리는데 기본적으로 와도에 의한 상승류가 있기 때문이다. 이 발달요소로 인해 중하층에 경압성이 생기면 그 부분에서 집중적인 비가 내린다고 생각하면 된다. 한반도는 여름에는 거의 순압대기를 이루고 있고 남북 온도경도보다는 동서 온도경도가 강하다. 그리고 북서쪽에 대륙이 위치해있기 때문에 한랭전선의 후면에서는 기본적으로 건조한 대기가 내려온다. 겨울에는 경압성은 강한 편에 속하나 기본적으로 대기 자체가 너무 건조하다. 이는 봄에 서풍 또는 동풍이 우세할 때도 마찬가지다.

기본적으로 상층이 하층보다 먼저 움직이기 때문에 상하층불안정으로 인해 생기는 것이 한랭전선인데 하층이 건조하다면 전선이 생기더라도 적란운이 발달하지 않는다. 따라서 여름의 한랭전선은 층운으로 대표되는 짓누르는 듯한 1~2km 정도 두께의 하층운이 우세하여 저기압이 빠져나갈 때까지 이슬비가 지속적으로 내리고, 겨울의 한랭전선은 구름대는 발달하지 않은 채 어마어마한 기온저하와 강풍을 몰고온다. 전형적인 한랭전선이 나타나는건 2~3월 이동성 저기압이 나타날 때, 6월의 습기 유입 시기, 9~10월의 환절기 기간 정도다. 여름에는 오히려 저기압 한 가운데서 적란운이 발달하는 스콜선이 발달하기 쉬운데, 하층이 덥고 습한 상태에서 상층 한기가 유입되기 때문이다. 이럴 때는 오히려 저기압 후면에서 바람 방향이 바뀌어버리면 큰 강수가 나타나지 않는다.[2]

전면 수렴대

열대성 저기압이 진행방향 앞쪽에 있던 차가운 공기를 따뜻한 공기(자신) 쪽으로 끌어당기면서 생기는 전선으로, 아직 태풍이 올라오지 않았는 데도, 한랭전선이 들이닥친 듯한 소나기와 비바람이 몰아치는 현상이 이것이다. 흔히 가을 태풍이 몰고 온다고 생각하지만 한반도에 영향도 없고 태풍 비수기인 겨울~봄에도 발생한다. 간혹 2019년 레끼마, 2010년 뎬무, 2011년 망온, 2002년 루사, 2022년 에어리처럼 여름 태풍도 전면 수렴대를 몰고 오는 경우도 있다. 가끔씩 장마전선과 헷갈릴 때가 있다. 보통 태풍이 이동하는 진행 방향에 맞서 있으며 북반구는 북동쪽, 남반구는 남동쪽으로 주로 발달하며 서진하는 태풍은 서쪽으로 발생하기도 한다. 허나 때로는 진행 방향과는 무관한 지역에서 발생하는 경우도 있다. 2010년 메기처럼 중국 남부로 가는데 일본, 대한민국에 이유 없이 비를 뿌리는 태풍도 있다.

2019년 레끼마가 8월 10일에 산둥성에 비를 뿌린 것과 2018년 콩레이가 10월 5일에 전국에 비를 뿌린 것도 전면 수렴대의 영향이다. 11월 쯤의 태풍은 주로 베트남으로 가는데 이 때 찬 기단과 만나 대만에서 일본 오키나와를 포함한 류큐 제도, 오가사와라 제도 쪽에 길게 비구름이 늘어난다. 보통 북서쪽에서부터 남동진하며 한반도로 다가오며, 한반도를 거의 다 통과할 때 쯤에는 힘을 잃어 강수대들이 약화되어 일본 열도로 향하는 경우가 많다. 그러나 경우에 따라서는 동해상에서 날씨폭탄으로 발달해 일본 열도에 더 큰 피해를 주기도 한다.[2]

위치와 표시

온대 저기압과 지상 전선을 보여주는 지상 일기도

일기도에서 한랭전선은 파란 삼각형을 연결하는 청색 선으로 표시되고, 삼각형이 향하는 방향은 찬 공기가 이동해가는 방향을 나타낸다. 일기 분석에서 한랭전선은 기온, 노점온도, 바람이 급변하는 곳에서 찾을 수 있으며, 수평 기온 경도가 큰 지역의 남쪽~동남동쪽 가장자리에 지상전선이 위치한다. 여름의 육지에서는 전선 양쪽의 기온 차가 작을 수 있다. 이 같은 경우에는 주로 노점온도와 바람을 이용하여 한랭전선의 위치를 찾을 수 있다.[3]

강수계 발달

한랭전선은 따뜻한 기단 쪽으로 이동해 나가기 때문에 온난 공기를 밀쳐 올려 강한 대류 구름을 발달시킬 수 있으며, 온난 지역의 공기가 불안정하고 수분이 많은 경우 강한 대류계들이 한랭전선을 따라 발달하고 많은 양의 강수를 생산할 수 있다. 그러나 온난 공기 지역의 수분이 충분히 많지 않거나, 불안정하지 않으면 대류 발달이 일어나지 않을 수 있다.[3]

전선

전선이란 비, 눈, 강풍 등 나쁜 날씨는 성질이 다른 공기 덩어리가 맞닿은 경계지역에서 주로 발생한다. 성질이 다른 큰 공기 덩어리(기단)가 만나면 접촉면을 경계로 기상요소들이 급격히 달라진다. 이 접촉면을 전선면(Frontal Surface)이라 한다. 그리고 이 면이 지면과 만나는 선을 전선(Front)이라고 부른다, 전선은 수학적인 하나의 선이 아니다. 어느 정도의 폭을 가진, 물리적 성질(온도, 습도, 바람, 이슬점 온도 등)이 다른 두 기단의 전이층이다. 보통 전이층의 폭은 수십 km 이하다. 따라서 지상일기도에서는 하나의 선으로 나타난다. 또 경계층이 지면과 만나는 대역(帶域)을 전선대(Frontal Zone)라고 부른다. 아래 표는 기단, 전선대, 전선의 수평규모를 비교한 것이다.

전선에서의 기상요소 변화

전선이 통과한 뒤의 가장 큰 변화가 기온이다, 기온변화의 양이나 변화율은 전선의 강도에 따라 다르다. 그러나 강한(폭이 좁은) 전선에서는 급격하고 큰 기온변화가 나타난다. 반면 약한 전선의 경우 기온변화는 완만하다. 이슬점 온도도 변화한다. 이슬점 온도는 대략적인 대기의 상대습도를 나타내준다. 일반적으로 찬 공기는 따뜻한 공기보다 건조하다. 그렇기에 이슬점 온도는 따뜻한 공기보다 찬 공기에서 낮게 나타난다. 이슬점 온도의 변화를 보면 전선의 이동과 종류를 알 수 있다.

기온과 더불어 가장 큰 변화가 바람이다. 전선의 앞과 뒤의 불연속을 알 수 있는 것은 풍향변화다. 풍속은 온난전선보다는 한랭전선이 통과한 뒤 강해진다. 전선의 통과는 기압의 변화를 가져온다. 전선이 관측소를 향해 접근하고 있을 때 기압은 감소한다. 전선이 통과한 후에는 급격히 또는 점차 증가한다. 다음 그림은 전선이 통과하면서 나타나는 기상요소의 불연속을 보여주고 있다. 풍향과 풍속을 그린 곳에 붉은 색으로 표시된 것이 온난전선이다. 파란색은 한랭전선이다. 좌측에서 우측으로 이동하면서 나타나는 기상요소를 잘 보여준다. 예를 들어보면 한랭전선이 통과한 후에는 기온, 이슬점 온도는 하강하고, 기압은 상승한다. 바람은 남서풍에서 북서풍으로 급격히 바뀐다.[4]

온난전선

온난전선(溫暖前線, 문화어: 더운전선)은 전선 중에서 따뜻한 기단이 차가운 기단 쪽으로 이동하는 전선을 말한다. 온난전선에서 발생하는 구름대는 권운, 권층운, 고층운, 난층운으로 이루어져 있다. 이 전선을 경계로 풍향·풍속·기온·습도 등의 기상요소가 바뀐다. 따뜻한 기단은 찬 기단보다 밀도가 작기 때문에 두 기단이 만나 따뜻한 기단이 찬 기단 쪽으로 이동하게 되면 빠른 속도로 찬 기단 위로 올라가게 된다. 이 때에 두 기단의 경계면의 경사는 완만하다. 이 온난전선을 타고 따뜻한 공기가 상승하면 냉각되어 구름을 생성, 비 또는 이 내린다. 이 경우의 비는 대개 가늘며 오랫동안 오는 비이다. 온난전선이 지나간 다음에는 일반적으로 기압이 감소하며, 기온은 높아진다. 어느 지점에 온난전선이 접근하고 있으면 먼저 순서대로 권운, 권층운, 고층운이 나타나고 다음에 난층운이 와서 비 또는 눈이 오게 된다.[5]

동영상

각주

  1. 한랭전선〉, 《위키백과》
  2. 2.0 2.1 2.2 한랭전선〉, 《나무위키》
  3. 3.0 3.1 한랭전선〉, 《기상학백과》
  4. 온난전선, 한랭전선〉, 《지구과학산책》
  5. 온난전선〉, 《위키백과》

참고자료

같이 보기


  검수요청.png검수요청.png 이 한랭전선 문서는 날씨에 관한 글로서 검토가 필요합니다. 위키 문서는 누구든지 자유롭게 편집할 수 있습니다. [편집]을 눌러 문서 내용을 검토·수정해 주세요.